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Abstract. “Can number and geometric spaces be reconstructed from their symmetries?”
This question, which is at the heart of anabelian geometry, a theory envisioned by
Alexander Grothendieck and developed in many variants by the Japanese arithmetic
school, illustrates, in the case of a positive answer, the universality of the homotopic
method in arithmetic geometry.

Starting with elementary examples, this paper first introduces the motivations and guid-
ing principles of the theory, then presents its most structuring results and its contemporary
trends.

As a result, the reader is presented with a rich and diverse landscape of mathematics,
which thrives on theoretical and explicit methods, and runs from number theory to
topology.
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1. Reconstructions from symmetries

At its most elementary level, for numbers and for spaces, anabelian geometry deals with
properties of polynomials. We investigate how the geometric notion of symmetries can be
applied to the case of numbers. The shadow of a unifying context begins to appear, which
will be fully completed in the next section.

1.1. From roots to symmetries - Galois theory. While it is known that the field of
complex numbers C contains the root of all polynomials, finding explicitly1 such roots for
a given polynomial is a more delicate task. As first noted by Évariste Galois (∼1830),
replacing roots by their symmetries –i.e., permutations that respect the original polynomial
relations – provides deep insight on the structure of the roots.

Symmetries of roots, a simple example. Look at the polynomial P = X4 − 5X2 + 6, which
factorizes into P = (X2 − 3)(X2 − 2), and thus admits exactly the four irrational numbers
±

√
2 and ±

√
3 as roots. We shall describe their symmetries as permutation maps2 on

{±
√

2, ±
√

3}. A direct computation shows that there are only four possible such maps as
shown in Figure 1.

e :
√

2 7→
√

2,
√

3 7→
√

3;
φ1 :

√
2 7→ −

√
2,

√
3 7→

√
3;

φ2 :
√

2 7→
√

2,
√

3 7→ −
√

3;
φ3 :

√
2 7→ −

√
2,

√
3 7→ −

√
3.

Fig. 1. Symmetries of the field Q(
√

2,
√

3)

Let us write Q(
√

2,
√

3) for the field gener-
ated by Q and the elements of {±

√
2, ±

√
3}.

The four above permutations are called the
symmetries of the roots of P or of the field
Q(

√
2,

√
3).

For any field K of this type – called num-
ber field, that is generated by a finite number of irrational numbers – one obtains similarly the
so-called Galois group of symmetries Gal(K/Q), that arises as permutations of roots of equa-
tions for the associated polynomial. In the example above, the group Gal(Q(

√
2,

√
3)/Q)

is {e, φ1, φ2, φ3} with a group structure defined by φ1 ◦ φ1 = e, φ2 ◦ φ1 = φ3, etc, to form
the so called “Klein group”, written V4 – geometrically, this group can also be seen as the
group of symmetries of a rectangle.

Symmetries and lattice of subfields. The following result shows that a certain property
of the field structure of such a field K can be dealt with via the symmetries of its Galois
group.

Galois correspondence. There is a one-to-one correspondence between
the fields that are contained in K, and the subgroups of Gal(K/Q).

The example of Figure 2, which is taken from “A Worked out Galois Group for the
Classroom”3, to which we refer for detailed computations and notations, illustrates the
potential intricacy of this correspondence in the case where the Galois is the alternate
group A4 – also the group of isometries of a tetrahedron4.

By recasting an arithmetic question into a group theoretic property, this correspondence
allows Galois to show that not every polynomial equation of degree bigger than 5 has

1Via an algorithm that uses the four elementary operations and the extraction of roots.
2More precisely, such a permutation maps ϕ is defined on the field K = Q(

√
2,

√
3) such that (i) for any

a ∈ Q it holds that ϕ(a) = a, for any α, β ∈ K it holds (ii) that ϕ(α + β) = ϕ(α) + ϕ(β) and (ii’) that
ϕ(αβ) = ϕ(α)ϕ(β).

3By L. Halbeisen and N. Hungerbühler, in The American Mathematical Monthly, 131 (6), p. 501–510.
DOI – Use of figures under CC BY 4.0

4The reader can draw the Galois correspondence for Q(
√

2,
√

3), which is much more simple.
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(a) Fields Lattice (b) Groups Lattice

Fig. 2. Galois correspondence for P = X6 − 3X2 − 1

computational solutions. Because the inclusion lattice is preserved, this result is also our
first example5 of field information reconstruction from their symmetries:

First reconstruction. The symmetries, as encoded by Gal(K/Q) determine
the lattice of all the subfields of K.

See again the example of Figure 2.

A Modern Glimpse. The reciprocal question, known as the Galois inverse problem which
was proposed by Hilbert in 1892, to know if every finite group can be obtained as a Galois
group over the rational numbers is still unresolved and continues, also with its variant
the “Noether problem”, to stimulate and to shape contemporary research – see Olivier
Wittenberg’s [Wit18].

1.2. ...to reconstructions for numbers and spaces. The partially successful considera-
tions of finite symmetries for numbers and the analogy with geometric symmetries motivate
to investigate the problem of the existence of a more canonical and unifying context for
reconstruction.

The field structure of numbers. In the case of numbers, we can define the field Q of all
algebraic numbers contained in C, which thus contains all the root of all polynomials. It
contains all the towers of all finite extensions Q ⊂ K1 ⊂ · · · ⊂ Kn ⊂ · · · ⊂ Q̄, where for
example K1 = Q(

√
2,

√
3) as in the previous section.

Q̄

K1

Q

Gal(Q/Q)

Gal(K1/Q)

Fig. 3. Tower of fields

One can then form the absolute Galois group of
rational numbers Gal(Q/Q), which is the seed of
number theory, and whose structure6 is quite rich.
While, in terms of elements, much remains unknown
about Gal(Q/Q), in terms of symmetries, an ana-
logue of the fundamental theorem of Galois theory
holds: any field K between Q and Q corresponds to
one and only one (closed) subgroup of Gal(Q/Q).

5The Class Field Theory – developed by Hilbert, Takagi and Artin between 1880 and 1920 – which
establishes a correspondence between (the abelianization of) a Galois group and certain data attached to
the number field, can be seen as another ancestor to anabelian geometry of Section 2

6The absolute Galois group of rational numbers is an infinite topological group.
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It is remarkable that, in this context, and as es-
tablished in successive steps by Jürgen Neukirch, Ikeda Masatoshi, Komatsu Keiichi,
Iwasawa Kenkichi, and Uchida Kôji (∼1970), one can go beyond the reconstruction of
the field lattice of the previous section:

Galois reconstruction of number fields. There exists an algorithm
which, starting from a group G of the type of an absolute Galois group of a
number field, gives the reconstruction of the number field K.

The Galois symmetries thus encode all the information of K and its field structure. Note
that this algorithmic result, that involves only one group (and not the comparison of two),
is a contemporary refinement of Hoshi Yuichiro in [Hos22] of the original result.

A geometric recasting. Let us see how the group of Galois symmetries for numbers admits
an equivalent for geometric spaces7, that is the group of loops on the space.

Fig. 4. Symmetries: a loop and a
covering.

Loops on a topological space X (over C) are just
continuously deformable closed curves (with same
starting and ending point ∗), which can be composed
by concatenation to form a group called the topo-
logical fundamental group, written πtop

1 (X, ∗). If we
consider a (finite) covering of X by another manifold
X1, as in Figure 4, we notice that a loop γ on X de-
fines, by sending the starting point x to the end point
ϕ(x), a transformation ϕ of X1. The corresponding
group of transformations Aut(X1/X) is the analog
of Galois symmetries Gal(K1/Q) for spaces.

This thus allows us to view the fundamental group
as a representation of symmetries, which raises the
question to know if geometric spaces can also be de-
termined by their symmetries. In the case of manifold
that are locally saddle-like, or hyperbolic, one has:

Mostow’s rigidity theorem (∼1968).
The topological fundamental group of a hyperbolic manifold of dimension
greater than 2 completely determines the manifold.

We thus obtain two separated reconstructions from symmetries: in arithmetic with
the Neukirch-Ikeda-Iwasawa-Uchida+ theorem , and in geometry with Mostow’s rigidity
theorem. As we will see in the next section, the unifying context for our reconstruction is
provided by Grothendieck’s arithmetic geometry.

A Modern Glimpse. An extension of the original (non-algorithmic) Neukirch-Ikeda-
Iwasawa-Uchida result was extended by Florian Pop (1994). More recently, it was shown
by Tamagawa Akio and Mohamed Saïdi that only a smaller portion of the Galois group is
sufficient to reconstruct the field – the “m-step solvable Neukirch-Uchida theorem” – see
[ST22] and also [Pop21].

7Or manifolds, spaces, in our case over C, which can be of any dimension and are obtained as gluing
pieces of (our) usual euclidean spaces, and which can have holes and doughnut-like shapes.
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2. The universality of homotopic arithmetic geometry

It follows Alexander Grothendieck’s vision8 that the unifying context of arithmetic
and geometry, or “homotopic arithmetic geometry”, is provided by algebraic varieties and
their étale fundamental groups.

2.1. Étale reconstructions for algebraic varieties. An algebraic variety X defined
over a field K is the analog of a manifold obtained by patching the zero loci of polynomial
equations with coefficients in K – we refer to Figure 5 for an example of a singular curve9

over K = C.

Fig. 5. An algebraic surface of
degree 7

Similarly to the previous section, its étale fundamental
group πet

1 (X, ∗) encodes the transformations – or étale
symmetries – of certain types of coverings. The étale
fundamental group is a profinite topological group, which,
since one has the following identifications

• for a manifold X over C: πet
1 (X, ∗) = π̂top

1 (X, ∗),
• for a number field: πet

1 (Spec K) = Gal(K̄/K),
generalizes both the absolute Galois group and the topo-
logical fundamental group.

When the arithmetic meets the geometry. By standing
in the following exact sequence – where Xan denotes the
complex variety defined by the polynomial equations of
X with solutions taken in C instead of K:
(FES) 1 → π̂top

1 (Xan, ∗)︸ ︷︷ ︸
Geometry

→ πet
1 (X, ∗) → Gal(K̄/K)︸ ︷︷ ︸

Number theory

→ 1,

the étale fundamental group intermingles number theory and geometry.
The sequence (FES) above further defines some actions of the absolute Galois group

on (a version of) the topological fundamental group: when X is the complex plane with 2
points taken out (whose fundamental group is generated by one loop around each point),
the action of Gal(Q̄/Q) is computable and is the origin of encoding Gal(Q̄/Q) via the
geometric combinatoric of spaces – the so-called Galois-Teichmüller theory10, see [Oes03]
for an introduction.

Anabelian arithmetic geometry, then... Anabelian11 arithmetic geometry deals with the
inverse process of the previous section, that is the question of the reconstruction of spaces
from exact sequences of the type of (FES). This kind of geometry emanates from a 1987
conjecture of Grothendieck, which, in its original form, states that any isomorphism between

8As exposed in his foundational letter to Gerd Faltings, see [Gro97].
9A one-dimensional complex variety, or curve, appears as a two-dimensional real variety, or surface.

Picture entitled “Labs Septic” by Oliver Lab, in “IMAGINARY – through the eyes of mathematics”, see
https://www.imaginary.org/gallery/oliver-labs for details and polynomial equation.

10This approach is traditionally called “Geometric Galois action”; one uses the terms Galois- or
Grothendieck-Teichmüller theory whether one emphasizes the arithmetic or combinatorial nature of the
theory. It provides key inputs for the reconstruction of varieties from their étale symmetries.

11Contrary to a first idea “Anabelian” does not stand for “ana-belian”, from the Greek “ana=anew”,
but for “an-abelian” with “an=without” and “abelian=commutative” – from the mathematician Abel.
Anabelian geometry deals with objects whose fundamental group lacks of commutativity.

https://www.imaginary.org/gallery/oliver-labs
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the étale fundamental groups of two hyperbolic curves comes from a unique isomorphism
between the varieties themselves.

Fig. 6. A hyperbolic curve of genus 3 with r marked points

This conjecture has been resolved by successive progress, which each introduces decisive
and lasting arithmetic insights – we refer to the still pertinent and illuminating survey
[NTM01] for more details and additional comments:

(1) Genus 0 curves over number fields. Nakamura Hiroaki (1991)
With the use of Deligne weight theory to identify genus and number of marked
points of the curves, and the reconstruction of inertia groups (or loops around
the marked points) which are generators of the étale fundamental group (for any
genus).

(2) Affine curves, any genus, and over number fields. Tamagawa Akio (1997)
With the use of Kummer theory, which reconstructs multiplicative first (and additive
structure then) and will lead to the notion of Kummer-faithfulness for the base
field.

(3) Any curves and genus, and over p-adic fields12. Mochizuki Shinichi (1999)
With the use of p-adic Hodge theory, of line bundles instead of coverings, and the
principle of container to reconstruct the curve, which will lead to the contemporary
mono-anabelian question.

At this stage, anabelian geometry exploits or reformulates some classical techniques
from:

• Number theory: local and global class field theory,
• Algebraic geometry: Deligne theory of weights, an anabelian good reduction criterion

à la Néron–Ogg–Shafarevich, and the Lefschetz trace formula to isolate rational
points in covers.

It also extends fundamental previous results such as: the Neukirch-Ikeda-Iwasawa-Uchida
theorem (from dimension 0, a field, to dimension 1, a curve) or Faltings’ isogeny theorem
(from abelian to non-abelian groups) which is a key step in establishing the finitness of
rational points on curves (the Mordell conjecture) – see ibid.

2.2. ... and now: contemporary anabelian developments. Beyond Grothendieck’s
(relative) initial vision, anabelian geometry now focuses on establishing and exploiting the
universality of arithmetic homotopy13, that is, how algebraic spaces can be studied via the

12A p-adic field K/Qp can be thought of as a neighborhood of a prime p in Q. It must be noted that
Grothendieck original conjecture for K a p-adic field does not hold (but a refined version does): there exists
non-isomorphic p-adic fields with isomorphic Galois groups.

13As opposed, for example, to number theory (that is too rigid and “does not see enough”) or complex
algebraic geometry (that is too flexible and “sees too much”).
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canonical group-theoretic properties of their étale fundamental groups. A panorama of
recent progress suggests the two following questions:

Universality of anabelian arithmetic geometry.
(1) Which kind of new insight, in number theory and algebraic geometry,

is given by the anabelian homotopic method?
(2) Does there exist a group-theoretic algorithm, which from a group that

is of étale fundamental group type for a hyperbolic curve, reconstructs
the original hyperbolic curve?

These structuring questions illustrate, respectively, the ubiquity and the canonicity of
the homotopic method in arithmetic geometry. In return, they both lead to beautiful
mathematical insights and interactions – we refer to [Boy25] for a living exchange between
Hoshi, Mochizuki, Tamagawa, and the first author on this topic.
A question from the attentive reader. Before these considerations, the attentive reader
naturally, and more prosaically, has certainly wondered: “After the dimension 0 and the
dimension 1... is there, similarly to Mostow’s theorem, some anabelian reconstructions
in higher dimension14?” One difficulty comes here from the so-called “purity property” of
the étale fundamental group, which does not see any information in subspaces of small
dimension (i.e, of codimension at least 2). The technique of polycurves and quasi-tripods
has nevertheless allowed Hoshi Yuichiro to establish that (smooth) algebraic varieties of
any dimension possess a fundamental system of anabelian neighborhood, another conjecture
of Grothendieck – see Hoshi’s [Hos21], also Schmidt-Stix [SS18].

Canonicity: algorithm and new structures. The canonicity of anabelian geometry is mostly
expressed in the consideration of algorithms that, in the construction steps, eliminate any
choice and rely on group-theoretic arguments only – see the sketch15 given in Algorithm 1,
and more generally [Hos25] for a broader and recent survey.

Algorithm 1 Anabelian reconstruction for a hyperbolic curve of strict Bely̌ı type
1: Geometric group: The maximal finitely generated normal subgroup of Π⇝ ∆
2: Genus and points: Vector space dimension in weighted étale cohomology ∆⇝ (g, r)
3: Inertia groups: By Bely̌ı cuspidalization, the decomposition, then inertia groups (∆, r)⇝

Dx and Ix

4: Multiplicative monoid: Kummer theory ⇝ multiplicative monoid (K(X)∗,⊠)
5: The (function field of) X: Uchida and divisors ⇝ (K(X),⊠,⊞)
6: The base field of X: K(X)⇝ KX

Here Π (resp. ∆) denotes a group isomorphic to a certain πet
1 (X, ∗) (resp. π̂top

1 (Xan, ∗)).

This approach in particular reveals the importance of two types of new structures:
(a) a distinction between “étale-like” and “Frobenius-like” objects, where the former is
used to transport the rigid information of the latter – see the mono-anabelian transport of
Hoshi in [Hos22]; and (b) the seminal role of multiplicative monoids, a structure that is
weaker than the ring one, on which is initially based both Galois theory and Grothendieck
algebraic geometry.

14Two other directions are given by the investigation of arithmetic phenomenons (a) in higher homotopy
and (b) in higher categories – we refer respectively to Schmidt and Stix’ [SS18] and to the first author’s
[Col21].

15We must insist that this algorithm applies to very specific types of curves only, and that the algorithm,
not the resulting isomorphism, is important.
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In another direction, the combinatorial anabelian geometry of Hoshi and Mochizuki,
can be seen as a functorial version of the Galois-Teichmüller theory for braids groups of
Section 2. One obtains, as a result, the anabelianity of Galois-Teichmüller theory and
a promising combinatorial model of the algebraic closure Q̄ of the rational numbers –
see Tsujimura Shota et al. in [Tsu23], and [Phi24] for a structured introduction with
references.

The nearly-abelian or minimalistic program – also the m-step solvable Grothendieck
conjecture – that investigates how “anabelianly big” the étale fundamental group must
be to reconstruct the spaces, can be seen as a variant of the canonicity property – see
Tamagawa-Saïdi for Galois groups, the geometric version of the third author [Yam24],
the Pop’s Neukirch-Uchida [Pop21], and the Galois-Teichmüller approach of Adam Topaz
in [Top21].

Universality: ramifications and explicit methods. The first example of the anabelian univer-
sality, can be seen in the result that a certain Grothendieck-Teichmüller group16 stemming
from the Galois-Teichmüller theory of Section 2.1, is indeed anabelian – in 2017 by Hoshi,
Minamide and Mochizuki, see [Tsu23]. In another direction, Berkovich geometry has
played a key role in connecting Tamagawa’s resolution of non-singularities to establish,
in its abolute version, the Grothendieck conjecture over p-adic fields – see [Lep23]. The
anabelian method applied to the reconstruction of theta functions of elliptic curves
with application to establishing Diophantine height inequality open new unsuspected per-
spectives – see [Moc23] and [Col24] for a first contact and references. More recently, one
observes new connections (e.g., in relation to the anabelian “Kummer faithfulness”) with
classical Galois theory à la Field Arithmetic – see the second author’s [Mur23],
Sawada et al. in [MST24], and Asayama-Taguchi in [AT24].

Explicit methods mostly follow the “Galois-Teichmüller thread” (now known to be
anabelian, see above). Among many, we can refer only briefly to recent developments17 of
Ihara’s program in number theory – see “When does Yama meets Ten?”18 pursued by
Rasmussen-Tamagawa 2017-... in [MR24], or interaction with Greenberg’s program by
Pries; or in relation with motivic theory – via Deligne-Ihara Lie algebra, see Ishii; or in
relation with low-dimensional topology – such as Oda’s prediction (see Philip) and
Morita obstruction (Nakamura et al., see list of references ibid.) – all references taken
from the report of Footnote 17.

Acknowledgments. The last two authors would like to thank the organizers of the RIMS-
Oberwolfach workshop “Arithmetic Homotopy and Galois Theory”19, for the opportunity
of writing this Snapshot, as well as all the participants for the enriching and stimulating
mathematical atmosphere.

16This GT group is related to diverse mathematical fields , such as, motivic theory, braid and Teichmüller
mapping class groups, operads, and quasi-triangular quasi-Hopf algebra.

17 See the corresponding reports in the already cited proceedings “MFO–RIMS Tandem Workshop:
Arithmetic Homotopy and Galois Theory (B. Collas, P. Dèbes, Y. Hoshi, and A. Mézard, eds.), vol. 20,
Oberwolfach Rep., EMS Press, 2023”.

18“When does the mountain meet the heaven?”
19Jointly held at the Research Institute for Mathematical Sciences, Kyoto University and the Mathema-

tisches Forschungsinstitut Oberwolfach from 24-29 September 2023, see web page at https://ahgt.math.
cnrs.fr/activities/workshops/MFO-RIMS23/.

https://ahgt.math.cnrs.fr/activities/workshops/MFO-RIMS23/
https://ahgt.math.cnrs.fr/activities/workshops/MFO-RIMS23/
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