MIME 23 - LM115 Année 2006-2007

Topologies initiales, limites, compacité

■ Topologies initiales

Exercice 1 - Topologie produit

Soient E_i espaces topologiques.

On munit $E = \prod E_i$ de la topologie la plus fine rendant continue chacune des applications projection $p_i : E \to E_i$.

- i. Donner la forme générale des ouverts de E.
- ii. Vérifier que $f: F \to E$ est continue si et seulement si chacun des $p_i \circ f$ l'est.

Exercice 2 -

On considère l'application,

$$\begin{array}{cccc} f: & \mathbb{C} & \to & \mathbb{C} \\ & z & \mapsto & z^2 \end{array}$$

- i. Montrer que f est continue lorsque $\mathbb C$ est muni de la topologie associée à la norme usuelle
- ii. Considérant \mathbb{R}^2 muni de la topologie produit, montrer que $f: \mathbb{R}^2 \to \mathbb{R}^2$ est continue pour cette topologie.
- iii. Considérant \mathbb{S}^1 cercle unité muni de la topologie induite, montrer que f restreinte à \mathbb{S}^1 est continue.

Exercice 3 -

Soit X espace topologique, $F\subset X$ muni de la topologie induite.

On considère $A \subset F$.

- i. Notant \overline{A}^F l'adhérence de A dans F, montrer que $\overline{A}^F = \overline{A}^E \cap F$.
- ii. Montrer que $\mathring{A} \subset \mathring{A}^F$. L'inclusion est-elle stricte?

Exercice 4 -

Soient X, Y espaces topologiques, $A \subset X$, $B \subset Y$.

Vérifier les identités suivantes,

$$\overline{A \times B} = \overline{A} \times \overline{B}, \quad \widehat{A \times B} = \mathring{A} \times \mathring{B}, \quad Fr(A \times B) = Fr(A) \times \overline{B} \cup \overline{A} \times Fr(B)$$

Exercice 5 - Graphe et continuité

On considère E, F espace topologiques avec F séparé.

- i. Montrer que F séparé $\iff \Delta = \{(x, x) \in F\}$ est fermé dans $F \times F$.
- ii. Montrer que si f est continue alors le graph de f, $Gr(f) = \{(x, f(x)), x \in E\}$ est fermé dans $E \times F$.

Qu'en est-il de la réciproque?

MIME 23 - LM115 Année 2006-2007

■ Limites et adhérence

Exercice 1 -

Soit (E, d) espace métrique. Montrer que,

 $A \subset E$ est fermé \iff toute suite d'élément de A convergente possède sa limite dans A.

Exercice 2 -

Monter que si $f: E \to F$ est continue alors tout suite (x_n) convergent vers x, $f(x_n)$ tend vers f(x).

Montrer la réciproque dans le cas des espaces métriques.

Exercice 3 -

Soit (x_n) suite d'élements de X espace topologique.

Notant A l'ensemble de ses valeurs d'adhérences, montrer que,

$$A = \bigcap_{n \in \mathbb{N}} \overline{\{a_i | i \ge n\}}$$

Exercice 4 -

On considère l'application,

$$\begin{array}{cccc} f: & \mathbb{R}_+^* & \to & \mathbb{R} \\ & x & \mapsto & sin(1/x) \end{array}$$

Déterminer l'ensemble des valeurs d'adhérence de f en 0.

Le graphe de f est-il fermé dans \mathbb{R}^2 ?

Exercice 5 -

Soit X un espace topologique ainsi qu'une suite (a_n, b_n) de $X \times X$. Montrer que si (a, b) est valeur d'adhérence de cette suite, alors a (resp. b) est valeur de la suite (a_n) (resp. (b_n)). Que dire de la réciproque?

MIME 23 - LM115 Année 2006-2007

■ Compacité

Exercice 1 - Prolégomènes

i. Rappeler la formulation de la compacité selon Borel-Lebesgue en terme de fermés.

- ii. Vérifier par Borel-Lebesgue que les espaces suivants ne sont pas compacts : \mathbb{R} , [0,1].
- iii. Soit K espace compact, $F \subset K$ fermé. Montrer que F est compact.

Exercice 2 - Normalité des espaces compacts

Soit X espace topologique séparé, $K \subset X$ sous-espace compact.

- i. Soit $x \in X/K$. Montrer qu'il existe deux ouverts disjoints U et V tel que $\{x\} \subset X$ et $K \subset V$.
- ii. Soient $K, L \subset X$ compacts disjoints. Montrer qu'ils peuvent être séparés par deux ouverts disjoints.
- iii. En déduire que deux fermés disjoints dans un compact peuvent être séparés par deux ouverts disjoints.

Exercice 3 - Idéaux maximaux d'espace fonctionel

Soit X espace compact. On considère l'anneau $\mathcal{F} = \{f : X \to \mathbb{R} \text{ continue}\}.$

Montrer que les idéaux maximaux de \mathcal{F} sont de la forme $\mathcal{M}_x = \{ f \in \mathcal{F} | f(x) = 0 \}$.

Exercice 4 - Théorème de Dini

Soit E espace compact, (f_n) suite de fonctions continues de E dans \mathbb{R} qui converge simplement.

Montrer que si (f_n) est monotone, alors la convergence est uniforme.

Exercice 5 - Théorème du graphe fermé

Soit E espace topologique, K espace compact. On considère la projection $\pi: E \times K \to E$.

- i. Montrer que la projection est fermée.
- ii. Soit $f: E \to K$ une application de graphe fermé dans $E \times K$. Montrer que f est continue.

Exercice 6 - Isométrie

Soit (E,d) métrique compact, $f:E\to E$ application vérifiant,

$$\forall x, y \in E \ d(f(x), f(y)) > d(x, y)$$

i. Soient $a, b \in E$. On définit deux suites (a_n) et (b_n) par

$$a_0 = a$$
 $b_0 = b$
 $a_{n+1} = f(a_n)$ $b_{n+1} = f(b_n)$

Montrer que quelque soit $\epsilon > 0$ il existe $p \ge 1$ tel que $d(a, a_p) < \epsilon$ et $d(b, b_p) < \epsilon$.

- ii. En déduire que f(E) est dense dans E et que f est une isométrie.
- iii. En déduire que f est continue et bijective. Enfin, que c'est un homéomorphisme.