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Abstracts

Simplicial and Homotopical Aspects of Arithmetic Geometry

Benjamin Collas

Following the “Longue marche à travers la théorie de Galois” (1981) and the
study of the absolute Galois group of rational via combinatorial group-theoretic
properties of the moduli spaces of curvesMg,[m] – now Grothendieck-Teichmüller

and anabelian geometry theories, Grothendieck’s “À la poursuite des champs”
(1983) lays the theoretical and categorical foundation for closing further the gap
between algebraic topology and algebraic geometry – see now Lurie’s∞-categories
and Toën’s geometry. As early exploited by T. Oda, this includes the higher
consideration of homotopy groups and stack symmetries of the arithmetic of the
spaces.

This report reviews results and techniques from Homotopical Arithmetic Geom-
etry in relation with the rational, motivic, and arithmetic aspects of the workshop
(Topics 1, 2 and 3) such as led (1) by these higher consideration, and (2) by
bringing closer spaces, anabelian and abelian geometries – see Fig. 1.
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Fig 1. Geometries, arithmetic and motives: Friedlander’s pro-spaces,
Morel-Voevodsky’s (un)stable motivic homotopy, and Ayoub’s motives.
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1. Geometric Galois Action and Anabelian Geometry

Anabelian investigations rely on seminal properties of the arithmetic-geometric
exact sequence (AGS) and the associated geometric Galois action (GGA):

1 Speck
++

oo πet1 (X, ∗)oo πet1 (X, ∗)oo πet1 (Xk̄, ∗) . . .oo  Gk → Out[πet1 (Xk̄, ∗)].

Following Grothendieck’s original insight, they are expressed in terms of group-
theoretic properties (e.g. center-freeness, terminality of inertia-decomposition
groups) for topological K(π, 1) varieties over number fields (Nakamura, Tama-
gawa) and p-adic fields (Mochizuki, Y. Hoshi) – see [IhNa97] for an overview.

1.1. Anabelian Geometry & Étale Homotopy Type. For k sub-p-adic field,
X a smooth connected variety and Y a hyperbolic curve over k, a reformulation
of Mochizuki’s Th. A in terms of {X}et is given by [SS16]:

(1) {−}et : IsomK(X,Y )
∼−→

K(π,1)
IsomHo(Pro-Sp)↓ket[{X}et, {Y }et]

that follows the expected π1-Hom-property between classifying pro-space BG and
pro-group G, and relies on the centre-freeness of Gk.

In higher dimension, assuming a certain factor-dominant immersion Y ↪→ C1×
· · ·×Cn into hyperbolic curves (HC) provides over number fields (1) the existence
of a functorial retract of {−}et by application of Tamagawa’s Lemma for separating
rational points and of Lefschetz counting-points formula, that implies (2) that:

Every smooth variety over a number field K admits a relative
anabelian Zariski basis U ,

i.e. such that Eq. (1) is satisfied for any X, Y ∈ U – see ibid.
Note that the later relies on the existence of strongly hyperbolic Artin neigh-

bourhoods in smooth varieties, i.e. for the scheme to be the abutment of some
elementary fibrations into hyperbolic curves {Xi}i=0,...,n that satisfy the (HC)
property.

1.2. Higher Anabelian Topological Types. For M Deligne-Mumford stacks,
and for the moduli of curvesMg,[m] in particular, the stack inertias IM,∗ →M of
cyclic type share similar properties with the divisorial (anabelian) ones: they are
topological generators with a GGA Tate-type [CoMa14], and Serre’s goodness is at
once an Artin neighbourhood and a IM-property – that measures the discrepancy
between topological and étale K(π, 1). This motivates the investigation of stack
anabelian obstructions in terms of {M}et – see {−}et in Fig. 1 and §2.

In terms of higher dimensional anabelian geometry, one could investigate some
étale topological type Postnikov anabelian obstruction for well-chosen varieties
over number fields. We also refer to techniques of p-adic fields which provides
natural classes of anabelian varieties (e.g. of Belyi type) for absolute (and relative)
versions of (2) above – see Y. Hoshi’s report in this volume.
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1.3. An Anabelian A1-geometry? It follows Isaksen’s Quillen adjunction (Ret, S)
– see also A. Schmidt’s work – that {−}et factorizes through (−)A1 , thus motivat-
ing the investigation of anabelian obstructions in terms of non-A1-rigid invariants.

2. Motives for the Moduli Stack of Curves

Morel-Voevodsky’s (unstable) motivic homotopy categoriesHet(k) and SHet(k)
of simplicial presheaves – and spectras of – provides a functorial bridge between
the arithmetic and motivic properties of spaces – see Fig. 1; from the category of
stacks St(k) to Ayoub’s derived weak Tannaka category DAet(k).

2.1. Algebraic & Topological Circles for Stacks. Jardine’s Quillen categor-
ical St(k) = Ho[sPret(Affk)] leads to the definition of motive for stack M(M) :=
N [Σ∞(MA1)] with the consequences of: (1) recovering the stack inertia as the
derived S1-loop space IM = [S1,M] in the algebraic-topologic decomposition of
the motivic Lefschetz P1 = S1 ∧Gm, and (2) considering a new homological fiber
functor to bypass the pro-unipotent nature of the “scheme” mixed Tate motives.

2.2. A Stack Inertia Decomposition. Indeed, the Hochschild homological func-
tor HH• applied to the GGA arithmetic stack inertia decomposition of the cyclic
special loci Mg,[m](γ) of [CoMa14] provides:

A motivic stack inertia decomposition for Mg,[m]:

M(M) = ⊕γ ⊕kr ⊕iM(Mkr)
(i)

where γ runs among the automorphisms of curves, kr among the irreducible com-
ponents ofMg,[m](γ) and (i) follows a lambda-cotangent complex decomposition.

Further study should confirm (1) the role of HH• as a (weak) Tannaka fibre
functor in DAet(k), while (2) the (S1,Gm)- (translation,filtration) for HH-spectra
in SHet(k) should reflect the stack limit Galois action between distinct stack inertia
and divisorial strata of [CoMa14].

3. Grothendieck Section Conjecture and Homotopic Obstruction

For X smooth variety over a field k and the question of local-global obstruc-
tion to the existence of rational points (Topic 1), a conceptual breakthrough is
given by Harpaz-Schlank’s étale homotopy sets X•(hk) and their adelic ratio-
nal versions X(A)• of homological and topological types • ∈ {h; (h, n)} (resp.
• ∈ {Zh; (Zh, n)}) – see [HaSc13].

X(k)
κ //

��

X(hk)•

loc

��
X(A) // ∏X(hkv)

•

They altogether provide (1) an unified overview of the
classical fin/fin-ab, Brauer-Manin and étale Brauer-
Manin descent obstructions, and (2) an ideal context
for Grothendieck’s section conjecture that embraces the
anabelian and abelian geometry at once – e.g. (Harari-Stix’s Cor. 9.13 ibid.): If
X(A)fin 6= ∅, then (AGS) has a section.
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3.1. Homotopic Obstruction in Family. Quick’s refined construction in cer-

tain model category of Pro-space of X(hk) = π0({Xk̄}
∧,hGk
et ) – as homotopy fixed

points simplicial set see [Qui10]– gives access to a homotopy section reformulation
where one can incorporate further constructions of classical geometry.

Let us consider a Friedlander’s geometric fibration X → S of geometrically
unibranch schemes, and assume being given some cuspical data CS and Cs for the
basis S(hk) and each k-rational fibres Xs(hk). Under those assumptions, Corwin
and Schlank establish that – [CoSc20]:

Let X → S as above. If the the injective (resp. surjective) section
conjecture holds the basis S and the fibres Cs, s ∈ S, endowed
with cuspidal data, then it does so for X.

3.2. A1- and Motivic Versions. Regarding Noether’s problem (Topic 1; in its
rational connectedness variant) and A1-geometry, we further refer to [AsOs19] §4.2
for Asok’s approach via A1-connectedness. For Topic 2, we refer to a question of
Toën regarding a motivic version of X(hk), where one replaces {−}et (resp. Gk)
by M (resp. a certain motivic Tannaka Galois group GMM ) in the homotopy fixed
point construction above.
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