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Cet article présente l’action du groupe de Grothendieck-Teichmüller ĜT sur les
éléments de torsion d’ordre premier du groupe fondamental profini πgeom1 (M0,[n]).
Nous établissons par ailleurs que les classes de conjugaison d’éléments de torsion
d’ordre premier de π̂1(M0,[n]) correspondent aux classes de conjugaison discrètes de
π1(M0,[n]).

In this paper we establish the action of the Grothendieck-Teichmüller group ĜT on
the prime order torsion elements of the profinite fundamental group πgeom1 (M0,[n]).
As an intermediate result, we prove that the conjugacy classes of prime order torsion
of π̂1(M0,[n]) are exactly the discrete prime order ones of the π1(M0,[n]).

1. Introduction

In this paper we establish an essential property of the action of the Grothendieck-
Teichmüller group ĜT on the prime order torsion elements of the profinite fundamen-
tal group πgeom1 (M0,[n]). This property shows that the ĜT action on these torsion
elements is of Galois type, as the absolute Galois action on geometric (discrete)
inertia of πgeom1 (M0,[n]) is given by an analogous expression.

The main difficulty in our study lies in characterising the profinite torsion con-
jugacy classes, which is an extremely difficult problem for profinite completions in
general. In the groups πgeom1 (M0,[n]), we solve this problem for prime order torsion
by showing that conjugacy classes are the same as the discrete ones.

In what follows, we identify πgeom1 (M0,[n]) with the full mapping class group Γ̂0,[n],
the group of oriented diffeomorphisms of the genus zero surface with n punctures
modulo those isotopic to the identity.

Inertia at infinity, stack inertia and Galois action. The idea of considering
torsion elements in Γ̂0,[n] comes from the general idea of A. Grothendieck’s Esquisse
d’un programme [Gro97] to study the absolute Galois group GQ through geometric
representations in algebraic fundamental groups.

More precisely, he suggests considering representations related to moduli spaces
of curves with marked pointsM0,[n]

GQ ↪→ Out(πgeom1 (M0,[n])),
1
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– which exist following [Oda97] because the moduli spacesM0,[n] are algebraic stacks
of type Deligne-Mumford defined over Q – and in particular the role of the auto-
morphism groups of such curves.

In the Deligne-Mumford compactificationMg,[n] ofMg,[n], the divisor at infinity
D∞ decomposes into its irreducible components:

D∞ =Mg,[n]\Mg,[n] = ∪D,

where the D are normal crossing divisors of codimension one inMg,[n]. When g = 0,
each of the associated inertia subgroups ID of π1(M0,[n]) is conjugate to one of the
cyclic groups <σ1σ2 · · ·σk> for 1 6 k 6 n− 3, where the σi are braid generators –
see below.

For pure moduli spacesMg,n, H. Nakamura proved by using generalized Grothendieck-
Murre theory that the action of the absolute Galois group GQ on inertia at infinity
ofMg,n is given by χ(σ)-conjugacy action, i.e. conjugating an inertia generator and
raising it to the power χ(σ) – cf. [Nak97] and [Nak99].

Because of the residual finiteness of the mapping class group, torsion elements of
Γg,[n] give torsion elements of the same order in the profinite geometric fundamental
group. These geometric torsion elements of the profinite group correspond to stack
inertia in the following sense.

As algebraic stacks, moduli spaces Mg,[n] admit local stack inertia groups Ix =
Aut(x) composed of the finite automorphisms of the isomorphism class of an object
x ∈ Mg,[n]. Following B. Noohi [Noo04] these geometric automorphisms groups
inject into the fundamental group

ωx : Ix → πgeom1 (Mg,[n]).

Identifying πgeom1 (Mg,[n]) with the mapping class group Γ̂g,[n], such inertia groups
in fact correspond exactly to finite subgroups of Γg,[n] by a result of S. Kerckhoff
[Ker83].

It is natural to ask whether all torsion elements of πgeom1 (Mg,[n]) are conjugate
to the geometric ones and whether GQ acts on torsion elements by χ(σ)-conjugacy.
The first main result in this paper answers the first question in the case of genus
zero and prime order torsion.
Theorem A. All prime order torsion elements of Γ̂0,[n] are conjugate to geometric
torsion elements.

The approach taken is cohomological and based on an idea of J. P. Serre [Ser97] :
conjugacy classes of finite subgroups of profinite completions of good groups can be
determined by the discrete group (proposition 3.4). The main obstacle in applying
Serre’s theory to the non-prime power torsion elements in Γ0,[n] is the fact that dis-
tinct conjugacy classes of same order can intersect – see remark 3.4. Characterising
order of torsion by cohomology properties is also a well-known difficult problem –
see remark 2.9.
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For the second question, one can show that the Galois action is as expected on all
geometric torsion elements of Γ̂0,[n] by using the geometry of the genus zero moduli
spaces – see [Col11b]. The general case for positive genus is not known.

Grothendieck-Teichmüller action on inertia of πgeom1 (M0,[n]). The Grothendieck-
Teichmüller group ĜT was first defined by V.G. Drinfel’d in the framework of quasi-
Hopf quasitriangular algebras [Dri90]. Y. Ihara [Iha94] proved the existence of an
injection GQ ↪→ ĜT . One of the main motivations of Grothendieck-Teichmüller the-
ory is to compare these two groups and in particular their action on fundamental
groups. In this paper we compare their actions on torsion elements πgeom1 (M0,[n]).

Definition. The group ĜT is the group of the invertible elements (λ, f) ∈ Ẑ∗ × F̂′2
satisfying the equations

f(x, y)f(y, x) = 1(I)
f(x, y)xmf(z, x)zmf(y, z)ym = 1(II)
f(x34, x45)f(x51, x12)f(x23, x34)f(x45, x51)f(x12, x23) = 1(III)

where xyz = 1, m = (λ− 1)/2 and xij are generators of Γ0,5.

V. G. Drinfel’d showed that ĜT acts on the profinite completion of the Artin
braid groups B̂n through the formula on braid group generators σi

σi 7→ f(yi, σ2
i )σλi f(σ2

i , yi) (λ, f) ∈ ĜT
where yi = σi−1σi−2 · · ·σ2

1 · · ·σi−2σi−1 – cf. [Dri90]. It is easily shown that this
action passes to the quotient Γ̂0,[n] of B̂n. Y. Ihara and M. Matsumoto [IM95]
proved the compatibility between ĜT and GQ actions on Γ̂0,[n]

Using this as well as morphisms between "flat ribbons" – cf. [LS97b], one can prove
that the action of the Grothendieck-Teichmüller group ĜT on inertia generators ID
at infinity of M0,[n] is given by λ-conjugacy. This result means that the action of
ĜT on inertia at infinity is of Galois type.

This similarity with the GQ action leads naturally to the question of whether the
ĜT -action on profinite torsion elements has the same form. The second main result
of this paper is the following.
Theorem B. The group ĜT acts on prime order torsion elements of Γ̂0,[n] by
λ-conjugacy.

In particular, since GQ ↪→ ĜT , this recovers the analogous result for GQ men-
tioned above, at least for prime order elements.

The first three cases of theorem B were already known since the torsion of order 2,
3 and 5 can be derived from cycles in the groups Γ0,[4] and Γ0,[5] in [LS97a]. Also by
studying Galois action on specific coverings of the projective line, H. Tsunogai and
H. Nakamura obtain explicit expressions on geometric torsion elements of Γ0,[4] by
precising the conjugating elements – see [Tsu06], [NTY10] and [NT03]. In addition to
these results, [LSN04] introduced new geometric special loci which are more closely
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related to the torsion elements, and give a fully explicit expression for the Galois
action on the last case in Γ0,[5].

2. Group Cohomology, torsion properties

We follow an idea introduced by J. P. Serre in [Ser97] which serves in certain
cases to relate conjugacy classes of elements of finite order of profinite completions
to discrete ones. In the case of the full mapping class groups Γ0,[n] this approach can
not be applied directly because these groups do not satisfy the (?) property defined
below – see Example 3.5. However the methode can be adapted to work in the prime
order torsion elements of Γ0,[n].

Let us consider the two following properties (?) and (H) below.

Let G be a discrete or profinite group and {Gi}I be a finite family of finite sub-
groups of G.

(1) Every finite subgroup of G is conjugate to a subgroup of one of Gi;
(2) For i 6= j or g /∈ Gi then Gj ∩ gGig−1 = {1}. (?)

Remark that such a family {Gi} must consist of exactly one representative for each
conjugacy classe of the finite maximal subgroups of G. We say in what follows that
a group G satisfies the (?) property for short, if it satisfies the (?) property for such
a family.

The property (H) is defined by:

Let G be a discrete group with finite virtual cohomological dimension. Let us
consider a finite family of subgroups {Gi}I of G. For every discrete G-module M ,
the morphism

(H) Hn(G,M)→
∏

Hn(Gi,M)

is an isomorphism in sufficiently high degree.

In the case of a profinite group G, we adapt this (H) property by replacing discrete
G-modules by torsion G-modules with continuous action.

2.1. Good groups, properties. We recall the notion of a good group and two
well-known properties – established in a more general context by H. Nakamura in
[Nak94], that are extensively used to obtain results in the next section. Recall that
a group G is said to be residually finite if it injects into its profinite completion Ĝ.

Definition ([Ser94]). Let G be a residually finite group and Mod(G) the category of
finite G-modules. The group G is said to satisfy the (An) property if the morphism
between groups cohomology

Hk(Ĝ,M)→ Hk(G,M) for any M ∈Mod(G)

is an isomorphism for k 6 n and is into for k = n+1. If G satisfy the (An) property
for all n > 1, the group G is said to be good.
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A group is said to be FP if the G-module Z admits a resolution of finite length
by projective modules of finite type. A cohomological condition is said to be virtual
if it is satisfied for a finite index subgroup. In particular, a FP group has finite
virtual cohomological dimension.

Whereas not true in general, the profinite completion functor is left exact for good
groups. The following results are well-known.

Lemma 2.1 ([Ser94, Nak94]). Let a discrete group G be an extension of discrete
groups K by H

1→ H → G→ K → 1
where H is good virtually FP and K is good. Then the following sequence is exact

1→ Ĥ → Ĝ→ K̂ → 1

This lemma is based on the weaker condition for G to satisfy the (A2) property
and implies the stability of the goodness property under group extension.

Proposition 2.2 ([Ser94, Nak94]). Let a discrete group G be an extension of discrete
groups K by H

1→ H → G→ K → 1.
If H is virtually FP , of finite type and good, and K is good, then G is good.

In our situation, we obtain the following results as a corollary.

Proposition 2.3. The mapping class groups Γ0,n and Γ0,[n] are good for n > 3.

Proof. Recall that for n > 1 the fundamental group π1(Sg,n) of a Riemann surface
is isomorphic to a free group, hence has cohomological dimension equal to one. Free
groups are then good groups since it is sufficient to check the (A1) property which
is straightforward.

Both results are established by induction on the number of marked points. Let us
consider the case of the pure mapping class group Γ0,n and remark that Γ0,4 ' F2.
Considering the Birman exact sequence coming from erasing points on surface

1→ π1(S0,n−1)→ Γ0,n → Γ0,n−1 → 1

where π1(S0,n−1) = Fn−2 is free hence good, the result is established following
proposition 2.2.

The case of the full mapping class group Γ0,[n] is quite similar using the following
exact sequence

1→ Γ0,n → Γ0,[n] → Sn → 1
where Sn is good as a finite group.

�

Remark 2.4. These results can be generalized to genus 1 and 2 with similar meth-
ods: for genus 1 let us remark that Γ1,1 = SL2(Z) contains a congruence sub-
group Γ2(3) which is a finite index free group; for genus 2 we use the morphism
M2,0 →M2,0/<ι >'M0,6 where ι is the hyperelliptic involution. Thus the groups
Γ1,[n] and Γ2,[n] are good groups. This is an important open question when g > 3.
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The result below is based on a series of results of Serre-Huebschmann in [Hue79],
K. S. Brown in [Bro94, chap. X] for discrete groups and C. Scheiderer in [Sch97] for
profinite groups.

Proposition 2.5. Let G be a discrete residually finite good group virtually FP , and
{Gi}I be a finite family of finite subgroups of G. If G has finite virtual cohomological
dimension and satisfies the (?) property, then the profinite completion Ĝ satisfies the
(?) property for the same discrete family.

We give here a brief outline of the proof in order to explain the role of the different
properties.

Sketch of proof. In the discrete case, cohomology groups H?(G, ·) are isomorphic
to the Farrell G-equivariant cohomology groups Ĥ?

G(AG, ·) [Bro94, chap. X] with
Ĥn
G(AG,M) =

∏
I Ĥ

n
G(AiG,M) where Ĥn

G(AiG,M) are cohomology groups associ-
ated to the subsimplex AiG composed of subgroups conjugate to Gi. Consider the
restriction morphism

Ĥn
G(AiG,M) −→ Ĥn

Gi
(AiG,M)

where Ĥ?
Gi

(AiG, ·) are isomorphic to theGi-equivariant cohomology groups Ĥ?
Gi

(AiGi, ·),
hence to the H?(Gi, ·) groups.

If G satisfies the (?) property for the Gi, then the previous morphism is an
isomorphism via an isomorphism of spectral sequences in E1. This gives the (H)
property in the case of discrete groups.

By the goodness property of G, the (H) property is transferred from G to its
profinite completion Ĝ for the same family of Gi. It is then a result of [Sch97]
– based on a discrete result of [Hue79] – that profinite groups which satisfies the
property (H) for some Gi satisfies the property (?) for the same Gi family. �

As a special case of the previous proposition, let us notice the following corollary
for the torsion-free case, in which the family of the (?) property is reduced to {1}.

Corollary 2.6. Let G be a discrete residually finite and good group virtually FP .
If G is torsion free then its profinite completion Ĝ is torsion free.

2.2. Group extension, prime order cyclic case. We introduce in this section
the theoretical framework that will be used in the mapping class group context.

Let G be a discrete group, H a torsion free subgroup of G and ρ a finite order
automorphism of H induced by conjugation by a finite order element of G. Consider
the discrete group G′ = H o 〈ρ〉 ⊂ G and the set of G′-conjugacy classes of sections
of

(1) 1→ H → G′ → 〈ρ〉 → 1,

which correspond bijectively to the non-abelian cohomology set H1(〈ρ〉, H).

Proposition 2.7. Let H be a discrete torsion free group and ρ be a prime order p
automorphism of H. Let us assume that the number of finite order p-cyclic conjugacy
classes of H o 〈ρ〉 is finite. Then H o 〈ρ〉 satisfies property (?).
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Proof. Let us consider a family {Gi}I as in the remark following the property (?) in
the beginning, consisting of one representative of each conjugacy classe of maximal
finite subgroups of G. As H is torsion free every finite subgroup of Ho〈ρ〉 has order
p, and by hypothesis there is only a finite number of Gi.

If two representatives of distinct conjugacy classes are non-trivially intersecting

Gi ∩ gGjg−1 = G0

where G0 6= {1}, then G0 has prime order as a subgroup of Gi. Thus Gi = G0
which implies gGjg−1 = Gi contradicting the assumption that Gi and Gj are in two
distinct conjugacy classes. �

Corollary 2.8. Let us consider G = Ho 〈ρ〉 a discrete subgroup where ρ is a prime
order p automorphism of H. If G is good with a finite number of conjugacy classes
of cyclic order p then Ĝ satisfies property (?) for the same discrete family {Gi}I of
G.

Proof. The proof is straightforward as according to the previous proposition the
group G′ = Ho〈ρ〉 satisfies the property (?) for the discrete family {Gi}I . Following
proposition 2.5 we deduce the same property for its profinite completion. �

From a non-abelian cohomological point of view, this means that there is a bijec-
tion between the following non-abelian sets

H1(〈ρ〉, Ĥ) ' H1(〈ρ〉, H)

which are in bijection with any chosen family of discrete Gi.

Remark 2.9. Let us notice that characterising the order of the torsion of a group
by cohomological properties is a well-known difficult problem. For example in the
case of a discrete group G, order of torsion elements are amongst the divisors of the
denominator of the Euler characteristic χ(G), but the existence of only p-torsion of
G can be determined – see [Bro74].

3. The ĜT action on algebraic p-torsion

This section presents the two main results of this article. Identifying the orbifold
πorb1 (M0,[n]) and geometric πgeom1 (M0,[n]) fundamental groups with the mapping
class group Γ0,[n] and its profinite completion Γ̂0,[n] respectively, we apply the coho-
mological results of the previous section to prove theorems 3.3 and 3.10.

3.1. Geometric torsion of πgeom1 (M0,[n]). We recall in this section some well-
known results about geometric torsion of πgeom1 (M0,[n]), or equivalently about tor-
sion element of the discrete group Γ0,[n]. The following result was proved by C. MacLach-
lan and W. J. Harvey (cf. [MH75]).

Theorem 3.1. Any torsion element of Γ0,[n] has order dividing n, n − 1 or n − 2.
There exists exactly one conjugacy class in Γ0,[n] for each given order, except for
order 2 and n even.
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Recall that the conjugacy class of an order k torsion elementγ of Γ0,[n] is charac-
terised by the signature of the quotient morphism Γ0,[n] → Γ0,[n]/〈γ〉, which is

(0; ∅; (n− 2)/k + 2) (0; k; (n− 1)/k + 1) or (0; k, k;n/k).
For a given order k 6= 2, only one of these signature can be realized. For k = 2
and if n is even, then there exist indeed two conjugacy classes of order two: one for
ε
n/2
n and one for ε(n−2)/2

n−2 . These two conjugacy classes induce two distinct types of
permutation on marked points.

Using the presentation of Γ0,[n] as a quotient of a braid group,

Γ0,[n] ' Bn/〈zn = 1, yn = 1〉
where

zn = (σ1σ2 · · ·σn−1)n yn = σn−1σn−2 · · ·σ2
1 · · ·σn−2σn−1

are respectively generators of the center of Bn, and the Hurwitz relation of the
sphere, we obtain:

Corollary 3.2. Every finite order element of Γ0,[n] is conjugate to a power of one
of the following order k elements εk below

εn = σ1σ2 · · ·σn−1 εn−1 = σ1σ2 · · ·σn−2 εn−2 = σ2
1σ2 · · ·σn−2.

3.2. Algebraic prime torsion of πgeom1 (M0,[n]). We establish the first of our main
results: the prime order torsion of πgeom1 (M0,[n]) is geometric, i.e. the conjugacy
classes of such elements come from discrete ones in πorb1 (M0,[n]).

Remark that as mapping class groups are residually finite groups, i.e. Γg,[n] ↪→
Γ̂g,[n] then the order of the discrete torsion is preserved in the profinite completion.
We note again εk ∈ Γ̂g,[n] for the images of the previous discrete torsion elements.

Let us now prove the first main result of this article.

Theorem 3.3. Let γ ∈ Γ̂0,[n] be an order prime torsion element. Then γ is conjugate
to a power of one of the elements εn, εn−1 or εn−2.

Remark 3.4. As Γ0,4 is isomorphic to a free group, it follows from a result on free
products that Γ0,4 satisfies the (?) property (see [Ser03]).

Results of the first sections can not be directly applied1 on G = Γ0,[n] since the
mapping class groups do not satisfy property (?) in all general as noticed in the
following example.

Example 3.5. Consider the mapping class group Γ0,[30]. This group contains the
isometry groups A5 and A4 of the dodecahedron and the tetrahedron respectively,
as maximal finite subgroups. We notice that both groups contains an order three
element – for the dodecahedron as rotation of a cube, with no marked fixed points
and 10 orbits of 3 points. Therefore Γ0,[30] contains two finite maximal subgroups
whose intersection is non-empty up to conjugacy.

1We thank B. Enriquez for this remark.
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Recall that the pure mapping class groups Γ0,n are torsion free. We need the
following lemma.
Lemma 3.6. Let γ be a finite order element of Γ0,[n]. Then the group Γ0,n o 〈γ〉
admits a finite number of conjugacy classes of group of order p.
Proof. Let us consider H = Γ0,n o 〈γ〉 and the following exact sequence
(2) 1→ Γ0,n → H → 〈[γ]〉 → 1,
where 〈[γ]〉 is the subgroup of Sn generated by the induced permutation by γ on
marked points.

Then H has finite index in Γ0,[n], which implies that H has a finite number of
conjugacy classes in Γ0,[n]. �

We now establish that the permutation induced by any torsion element comes
from a geometric one.

Lemma 3.7. Let γ ∈ Γ̂0,[n] be a torsion element of prime order p and let us denote
by [γ] the permutation induced on marked points via the morphism Γ̂0,[n] → Sn.
Then there exists an element γ0 of the discrete group Γ0,[n] such that [γ0] = [γ].

Proof. Let γ ∈ Γ̂0,[n] be a torsion element of prime order p, and let us consider the
two following exact sequences

1 // Γ̂0,n // Γ̂0,[n] // Sn
// 1

1 // Γ0,n
?�

OO

// Γ0,[n]
?�

OO

// Sn
// 1

Suppose that [γ] is not geometric. Let us consider the discrete group
H = 〈Γ0,n, σ〉 ⊂ Γ0,[n]

where σ ∈ Γ0,[n] is an infinite order preimage of [γ]. As any permutation associated to
an element of H is a power of [γ] then H is torsion free, since if τ ∈ H is torsion and
gives the permutation [γ]i, then the element τ j is torsion for ji = 1 mod ord([γ])
and gives the permutation [γ], which can not happen since no torsion element is
associated to [γ] by hypothesis .

Remark that the group H is good as an extension of good groups by the exact
sequence (2) where Γ0,n is good according to proposition 2.2. From corollary 2.6
it then follows that the torsion-freeness of H implies the torsion-freeness of the
profinite completion Ĥ. Moreover, Ĥ is the closure of H in Γ̂0,[n], since H is of finite
index and since finite index subgroups are open hence closed following [NS03], hence
Ĥ ⊂ Γ̂0,[n]. Now, remark that γσ−1 ∈ Γ̂0,n, hence γ = hσ for h ∈ Γ̂0,n. Thus we
have γ ∈ Ĥ, which contradicts the fact that Ĥ is torsion free.

Therefore, if γ ∈ Γ̂0,[n] is torsion, then [γ] is geometric and thus there exists
γ0 ∈ Γ0,[n] such that [γ] = [γ0]. Also, γp0 = 1 since [γp0 ] = 1, so γp0 ∈ Γ0,n and this
group is torsion free. �

We now prove theorem 3.3 by applying the cohomological results of the previous
section on a geometric element associated to [γ].
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Proof of the theorem 3.3. Let γ ∈ Γ̂0,[n] be a p prime torsion element. By the previ-
ous lemma there exists a torsion element γ0 of Γ0,[n] such that [γ0] = [γ]. Since Γ̂0,n

is torsion free, the preimage 〈[γ]〉 in Γ̂0,[n] is a semi-direct product Γ̂0,n o 〈γ〉. Since
γ0 is in this preimage, there exists h ∈ Γ̂0,n such that

γ = hγ0.

Let us consider the relation
(3) γp = (hγ0)p = hγ0(h) · · · γp−1

0 (h) = 1

where γ0 acts by conjugation on h. Then h is an order p cocycle of H1(〈γ0〉, Γ̂0,n).
Following lemma 3.6 there exists only a finite number of conjugacy classes in the
group Γ0,n o 〈γ〉.

As γ0 = h−1γ belongs to Γ̂0,n o 〈γ〉 we have

Γ̂0,n o 〈γ〉 = Γ̂0,n o 〈γ0〉
Following corollary 2.8 and the fact that Γ0,n o 〈γ0〉 is good (see exact sequence
(2) and argument below), the following non-abelian cohomology sets correspond
bijectively

H1(〈γ0〉, Γ̂0,n) ' H1(〈γ0〉,Γ0,n).
Hence there exists h0 ∈ Γ0,[n] which gives the same cocycle as h, i.e. the cocycles h
and h0 differ by a coboundary

h = kh0γ0(k−1)

= kh0γ0k
−1γ−1

0 for k ∈ Γ̂0,[n].

By substitution of this relation into γ = hγ0 we have
γ = k.h0γ0.k

−1

where h0γ0 is a torsion element of Γ0,[n] since it is a conjugate of γ.
Hence every torsion element of prime order of Γ̂0,[n] is conjugate to a geometric

torsion element of same order of Γ0,[n]. �

Remark 3.8. In this result and the following, restriction to prime order is only due
to the Serre’s theory approach we employed in section 2.2.
Remark 3.9. From this point of view, the proposition 3 of [LS94] can be seen as
determining the order 2 and 3 (resp. 5) torsion in Γ̂0,[4] (resp. Γ̂0,[5]).

3.3. The ĜT action on torsion. As we know that any prime order torsion element
of Γ̂0,[n] is conjugate to a discrete one, we use the explicit action of the Grothendieck-
Teichmüller group ĜT on the braid group generators of the mapping class group
Γ̂0,[n] to deduce the ĜT action on prime order torsion elements of Γ̂0,[n].

Theorem 3.10. The Grothendieck-Teichmüller group ĜT acts by λ-conjugacy on
the prime order torsion elements of Γ̂0,[n], i.e. if F = (λ, f) is an element of ĜT
and ε ∈ Γ̂0,[n] a prime order torsion element, then there exists g ∈ Γ̂0,[n] such that

F (ε) = gελg−1.



A ĜT ACTION ON TORSION OF πgeom
1 (M0,[n]) 11

The proof of this result requires us to consider a particular braid group quotient
with the following property.

Proposition 3.11. Let zn (resp. yn) denote the generator of the center (resp. the
Hurwitz element) of the braid group Bn and let us consider the group

G = Bn/〈zny−1
n 〉.

Then G is good and every torsion element of Ĝ is conjugate to a power of one of
ε̃n−2 = σ2

1σ2 · · ·σn−2 ε̃n−1 = σ1σ2 · · ·σn−2 or ε̃n = σ1σ2 · · ·σn−1

respectively of order n− 2, n− 1 and n in G.

Proof. Let us show that G is good. We consider the exact sequence

(4) 1 // Ker(ψ) // G = Bn/〈y−1
n zn〉

ψ // Γ0,[n] = Bn/ < yn, zn > // 1

and let us identify Ker(ψ) with Z using the morphism φ : Bn → G where we note
ȳn = φ(yn) and z̄n = φ(zn). The element ȳn is central as ȳn = z̄n in G. Hence for
ω ∈ Ker(ψ) we have ω = ȳjnz̄

k
n = z̄j+kn in G and Ker(ψ) is cyclic.

The group G is thus good, of finite type and FP group extension and we conclude
using the proposition 2.2.

Let γ be a torsion element of Ĝ of prime order p. Since G is good and of finite
type the profinite completion functor is exact according to lemma 2.1. The exact
sequence (4) then induces

(5) 1 // Ker(ψ̂) // Ĝ
ψ̂ // Γ̂0,[n] // 1

where Ker(ψ̂) ' Ẑ, hence torsion free – or more generally by proposition 2.6. Con-
sidering ψ̂(γ) ∈ Γ̂0,[n], then ψ̂(γ) and γ have the same order.

Following proposition 3.3 the element ψ̂(γ) is conjugate to a power of a geometric
element of Γ0,[n]

ψ(γ) = gεki g
−1 with g ∈ Γ̂0,[n] and i ∈ {n− 2, n− 1, n}.

As ε̃i is a preimage in Ĝ of εi we obtain
(6) γ = g̃ε̃ri g̃

−1z̄jn

where z̄n is the generator of Ker(ψ̂) and g̃ is a preimage of g in G. Powering the
relation above to the order p of γ we obtain

z̄pjn = 1

as zn generates the center of B̂n. This implies j = 0 since Ker(ψ) ' Ẑ is torsion
free as a group of cohomological dimension one. We conclude with equation (6) that
γ is conjugate to a geometric element in Ĝ since

γ = g̃ε̃ri g̃
−1

with i ∈ {n− 2, n− 1, n} as announced. �
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Lemma 3.12. The ĜT action defined on the braid group B̂n factors through the
quotient Ĝ = B̂n/〈zny−1

n 〉. This action is compatible with the morphism Ĝ→ Γ̂0,[n].

Proof. The proof is straightforward and comes from the action on B̂n defined in
[Dri90]. For F ∈ ĜT we have

F (yn) = yλn F (zn) = zλn.

Hence F (zny−1
n ) = (zny−1

n )λ since zn generates the center of B̂n. Then the action
of ĜT on B̂n and Γ̂0,[n], defined on each generator σi, is defined on a compatible
manner on Ĝ

B̂n //

((

Γ̂0,[n]

Ĝ = B̂n/〈zny−1
n 〉

OO

hence respects the morphism Ĝ→ Γ̂0,[n]. �

We now prove the main theorem of this article.

Proof of theorem 3.10. Let γ be a p-prime order torsion element of Γ̂0,[n] and F = (λ, f)
be an element of ĜT . Following proposition 3.3 the element γ is conjugate to a r-
power for some r ∈ Z of one of the maximal finite order element εn, εn−1 or εn−2.

Since F (γ) has same order as γ, it is conjugate to a power of one of these elements
according to the same proposition. As the group ĜT preserves permutation and as
each of the distinct elements εk has a distinct number of fixed points, we deduce

F (γ) = αγkα−1

for some k ∈ Ẑ. Let us consider the commutative diagram

Γ̂0,[n]

F
��

// Γ̂ab0,[n]

F
��

Γ̂0,[n] // Γ̂ab0,[n]

which gives the relation
(7) F (γab) = F (γ)ab.

We now compute in the abelianisation of Γ̂0,[n] to determine the k power. Since
Γ̂0,[n] = Bn/〈zn, yn〉, in Γ̂ab0,[n] one obtains σi = σ for 1 6 i 6 n − 1 from braid
relation, σn(n−1) = 1 from relation zn = 1 and σ2(n−1) = 1 from relation yn = 1.
Hence

Γ̂ab0,[n] '
{
Z/(n− 1) if n is odd
Z/2(n− 1) if n is even.

Let us first consider the case γ ∼ εrn−1. Then from the expression εn−1 =
σ1 . . . σn−2 in corollary 3.2 and theorem 3.3, the equation (7) gives

σr(n−2)λ = σr(n−2)k
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and computing modulo the order of the element γ

(n− 2)λ ≡ (n− 2)k mod p
λ ≡ k mod p

since p divides n− 1.

For the case γ ∼ εrn in Γ̂0,[n], let us consider the subgroup Γ̂1
0,[n+1] in Γ̂0,[n+1]

constituted by elements fixing a point, and the orbifold fundamental groups homo-
morphism induced by erasing the fixed point

Γ̂1
0,[n+1] → Γ̂0,[n].

Then γ = (σ1 · · ·σn−1)r ∈ Γ̂1
0,[n+1] is sent to εrn which is of order n in Γ̂0,[n]. Thus

the ĜT action on γ is induced by its action on εn.

The last case γ ∼ εrn−2 is more subtle since γab = ±1 in Γ̂ab0,[n]. We then consider
the quotient Ĝ = B̂n/〈zny−1

n 〉 in the braid group through the factorization

Bn //

((

Γ0,[n]

Bn/〈zny−1
n 〉

OO

whose abelianisation is isomorphic to

Ĝab ' Ẑ/(n− 1)(n− 2).

Following proposition 3.11 let us consider ε̃n−2 the obvious preimage of εn−2 in Ĝ.
We remark that its abelianisation ε̃abn−2 has same order as εn−2 in Ĝab.

Let γ̃ be a preimage of γ in Ĝ and let F ∈ ĜT . Then γ̃ is conjugate to a geometric
element in G by proposition 3.11 and we can consider the action of F on γ̃ by lemma
3.12. Because F preserves permutations, F (γ̃) is conjugate to a power of the same
geometric element as γ, so we have:

(8) F (γ̃) = β−1γ̃mβ with β ∈ Ĝ.

Computing in the abelianised Ĝab as previously, since the ĜT action on Ĝ commutes
with abelianisation, the equations

F (γ̃)ab = F (γ̃ab)

and (8) imply
grλ(n−1) = grm(n−1)

where g is a generator of Ĝab. As gr(n−1) has same order p as γ̃ we have λ = mmod p.
Thus

F (γ̃) = β−1γ̃λβ where β ∈ Ĝ.

Following lemma 3.12 this relation is the same in Γ̂0,[n]. �
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Due to the fact that elements considered have prime order, the computations in
the proof could be simplified. However remark that the proof given above is adapted
to work for any order as soon as it is known that the action of an element of ĜT
preserves conjugacy classes of groups generated by profinite torsion elements.

For example the exact analogous result can be established for the absolute Galois
group GQ ⊂ ĜT acting on any geometric torsion element of πgeom1 (M0,[n]), regard-
less of order. The reason is that an explicit description of the the special loci –
defined as the substacks ofM0,[n] whose closed points admit the torsion element as
automorphism – cf. [Sch03], is used to control the action of GQ on the conjugacy
classes – cf. [Col11b].

In the case of genus one, a complete description of special loci is not available,
hence the Galois action on the corresponding geometric inertia is not fully deter-
mined. Moreover, it is not known whether ĜT acts on the full mapping class groups
Γ̂g,[n] for g > 1.

In [Col11a] we define a new Grothendieck-Teichmüller group ĜR, defined in the
torsion context of [Sch06], which contains GQ and acts on the full mapping class
groups Γ̂g,[n]. The cohomological results of section 1 on prime order extension of
profinite torsion free groups are still usable. We adapt them to a description of dis-
crete torsion conjugacy classes of Γ1,[n] to obtain analogous results for Grothendieck-
Teichmüller action on genus one profinite torsion elements.
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