The topics of my talks focus on the arithmetic geometry of the moduli spaces of curves, mainly from the profinite point of view with Geometric Galois Representations or the etale homotopy/topological type in relation with unstable motivic homotopy theory, but also from the proalgebraic point of view in relation with motives, operads and KZ equations. Hereinabove a selection.

Talks - Motives and Homotopy

  • Workshop on Arithmetic and Geometry, Cetraro, Italy, August 2016.
    Arithmetic and Motivic considerations for Moduli Spaces of Curves.
  • Séminaire Arithmétique, Lille, France, June 2016.
    Champs de modules de courbes, considérations arithmétiques et motiviques.
  • Oberseminar Arithmetic Geometry, Bayreuth, Germany, June 2016.
    Unstable Motivic Homotopy, homotopy groups and realizations.
  • Oberseminar Arithmetic Geometry, Bayreuth, Germany, Jan/Dec. 2016/15.
    Tannakian formalism in Motivic theories I & II.
  • Oberseminar Leray - WW University Münster, Germany, June 2015.
    Motivic homotopy considerations for Deligne Mumford stacks.
  • Oberseminar Leray - WW University Münster, Germany, December 2014.
    Motivic (Homotopy) Theories, a first encounter.

Talks - Arithmetic of Moduli Stack of Curves

  • Workshop on Grothendieck-Teichmüller Theories, Chern Institute, Tianjin, July 2016.
    Arithmetics of Inertia Stack of Moduli Spaces of Curves
  • SFB Higher Invariants Seminar, Regensburg, Germany, April 2016.
    Stack Arithmetic of Moduli Spaces of Curves.
  • Oberseminar Arithmetic Geometry - Bayreuth University, Germany, October 2014.
    Arithmetic of Stack Inertia in moduli spaces of curves.
  • Etale fundamental group seminar - Münster University, Germany, January 2013.
    Arithmetic Geometry, the case of moduli spaces of curves: projective line, hyperplans arrangement and Grothendieck-Murre theory.
  • Arithmetic and Geometry of Picard-Fuchs Differential Equations, IMPA, Brésil, August 2012.
    Grothendieck-Teichmüller theory (I): computing Geometric Galois actions.

Talks - Grothendieck-Teichmüller Theory

  • Colóquio de Geometria e Aritmética - Rio de Janeiro, Brazil, March 2014.
    Stack inertia of moduli spaces of curves and Grothendieck-Teichmüller theory.
  • Topology Oberseminar - Münster University, Germany, April 2013.
    Grothendieck-Teichmüller theory and profinite torsion in mapping class groups.
  • Leray Seminar - Münster University, Germany, December 2012.
    Grothendieck-Teichmüller II: Hatcher-Thurston complex in higher genus.
  • Leray Seminar - Münster University, Germany, December 2012.
    Grothendieck-Teichmüller I: geometric representation in moduli spaces of curves in genus 0.
  • Algèbre et Géométrie - Femmes et Mathématiques, I.H.P., Paris, Novembre 2012.
    Espaces de modules de courbes, inerties et groupes de Grothendieck-Teichmüller.
  • Séminaire Géométrie Algébrique, Université de Montpellier, France, October 2012.
    Action de Grothendieck-Teichmüller sur inertie champêtre des espaces de modules de courbes.
  • Field Arithmetic Seminar, Tel Aviv University, Israel, June 2012.
    A glimpse of Grothendieck-Teichmüller theory.
  • Séminaire arithmétique, Université de Lille 1, France, Mars 2012.
    Théorie de Grothendieck-Teichmüller : action galoisienne sur l'inertie champêtre des espaces de modules de courbes.
  • GDR Tresses - WinterSchool II 2011, Université de Caen, France, Décembre 2011.
    Grothendieck-Teichmüller theory and profinite torsion of mapping class groups.
  • Séminaire Algèbre et géométrie, Université de Caen, France, Novembre 2011.
    Action galoisienne sur l'inertie champêtre des espaces de modules de courbes : mapping class groups, tresses, torsion et théorie de Grothendieck-Teichmüller.
  • Séminaire Teich, Université Paul Cézanne - FRURAM, Marseille, France, Novembre 2011.
    L'action de Grothendieck-Teichmüller sur l'inertie champêtre des espaces de modules de courbes est cyclotomique en genres zéro et un.
  • Seminar of Number Theory - Bayreuth University, Germany, Novembre 2011.
    Grothendieck-Teichmüller action on stack inertia of moduli spaces of curves in genus zero and one.
  • Séminaire Analyse Algébrique, Institut de Mathématiques de Jussieu, Paris, France, Janvier 2011.
    Groupe de Grothendieck-Teichmüller et espaces de modules de courbes de genre 0, action sur la torsion du groupe fondamental.
  • Séminaire des thésards, Institut de Mathématiques de Jussieu, janvier 2010.
    Groupes de Grothendieck-Teichmüller : action galoisienne, espaces de modules et tours. Notes fichier
  • GTEM, Galatasarai University - Istanbul, Turquie, juin 2009.
    Grothendieck-Teichmüller group : action on torsion elements of $\pi_1(M_{0,[n]})$ Notes fichier

Talks - Braids, Operads, KZ-Equations,...

  • Kollegseminar Kombinatorische Strukturen in der Geometrie, Osnabrück, Germany, May 2015.
    Arithmetics of Moduli Spaces of Curves.
  • Seminario di Algebra, Topologia e Combinatoria - Universita di Pisa, Italy, April 2015.
    Arithmetic of inertia in braids groups and Grothendieck-Teichmüller theory (towards a Grothendieck-Dynkin theory).
  • Operads Leray Seminar - Münster University, Germany, February 2014.
    Grothendieck-Teichmüller III: from KZ-equations to Operads.
  • Arithmetic and Geometry of Picard-Fuchs Differential Equations, IMPA, Brésil, Aout 2012.
    Grothendieck-Teichmüller theory (II): Knizhnik-Zamolodchikov system, Galois and Hodge aspects.

Conferences

See here for a more up to date list.
  • Braids and Arithmetic.
    CIRM, Marseille, France (2014).
  • Motivic Galois Groups.
    Alfréd Rényi Institute of Mathematics, Budapest, Hungary (2013).
  • Grothendieck-Teichmüller Groups, Deformation and Operads.
    Isaac Newton Institute for Mathematical Sciences, Cambridge, UK (2013).
  • The 19th Amitsur Memorial Symposium, Tel Aviv, Israël (2012).
  • Algèbre et Géométrie, Forum des jeunes mathématicien-e-s.
    I.H.P., Paris (2012).
  • Arithmetic and Geometry of Picard-Fuchs Differential Equations.
    IMPA, Rio de Janeiro, Brazil (2012).
  • Winter Braids II - School on algebraic and topological aspects of braid groups.
    Université de Caen, France (2011).
  • Arithmétique des Variétés en Famille I et II, Bordeaux et Paris, France.
    Groupe fondamental des schémas et Cohomologie étale.
  • Development of Galois-Teichmuller Theory and Anabelian Geometry - 3rd MSJ-SI.
    RIMS, Kyoto University, Kyoto, Japan (2010).
  • Théorie de Galois géométrique et différentielle.
    CIRM de Marseilles, France (2010).
  • Geometry and Arithmetic around Galois Theory Summer School.
    Galatasaray University, Istanbul, Turquie (2009).
  • Moduli Space Winter School.
    Max Planck Institute, Bonn, Allemagne.(2007).
  • University of Pennsylvania.
    Philadelphie, États-Unis (2007).

Others

Architecture - EZCT

The EZCT architeture agency was looking for a Mathematician for its participation in the Pavillon Seroussi competition. I hence gave a hand on discrete differential geometry, and more precisely on the very nice paper Liu Y., Pottmann, H., Wallner, J., Yang Y., and Wang W.: Geometric Modeling with Conical Meshes and Developable Surfaces. ACM Trans. Graphics 25(3), 681-689, (2006), Proc. SIGGRAPH 2006.
This competition was led by a computationnel process in relation with experimental architecture such as introduced by the sculptor and architect André Bloc.

Participants : Biot(h)ing ; EZCT Architecture & Design Research ; Gramazio/Köhler ; DORA ; ijp corporation ; Xefirotarch.
Team EZCT : Philippe Morel, Felix Agid et Jelle Feringa (EZCT), Marc Schoenauer (INRIA), Maryvonne Teissier (Paris 7), Harald Kloft et Jürgen S. Wassink (OSD – Office for Structural Design).
Exhibition at La Maison Rouge - Fondation Antoine de Galbert.
Laureates: EZCT - DORA




Update: January 2017 -- 3D tags sphere