Initiation à LATEX

Benjamin Collas

Mathématiques fondamentales
Université Pierre et Marie Curie - Paris VI

Formation pour les étudiants de Licence Mathématiques - Informatique Université Denis-Diderot Paris VII 2006-2007

Plan de la présentation

- 1 Présentation de l'environnement
 - Philosophie WYSIWYG et compilateur
 - Distributions et environnement logiciel
 - Un fichier modèle
- 2 Structurer un document
 - Mise en page élémentaire
 - Mise en forme de texte
 - Inclusion de figures
- 3 Rédiger des textes scientifiques
 - Mathématiques élémentaires
 - Théorèmes, preuves, compteur et macro
 - Deux packages :XY-Pic et Listings
- 4 Pour aller plus loin

Philosophie WYSIWYG et compilateur Distributions et environnement logiciel Un fichier modèle

Philosophie WYSIWYG et compilateur

What You See Is What You Get

Un éditeur de texte qui permet de voir l'aspect de son document imprimé au fur et à mesure de la saisie.

Word de Microsoft, Calc d'OpenOffice.

Compilateu

Le rédacteur saisit une suite d'instructions qui produiront, après interprétation, le document à imprimer.

LaTeX

Avantages

- Dissociation du sens et de la présentation
- Prise en compte de la disposition globale du texte (ligatures, interlignage, taille des symboles mathématiques).
- Portabilité de l'information (compatibilité OS)

Remarque

Une alternative qui concilie les avantage de LaTEX et l'ergonomie du WYSIWYG est présentée par le projet LyX.

Philosophie WYSIWYG et compilateur

What You See Is What You Get

Un éditeur de texte qui permet de voir l'aspect de son document imprimé au fur et à mesure de la saisie.

Word de Microsoft, Calc d'OpenOffice.

Compilateur

Le rédacteur saisit une suite d'instructions qui produiront, après interprétation, le document à imprimer.

LaTeX.

Avantages

- Dissociation du sens et de la présentation
- Prise en compte de la disposition globale du texte (ligatures, interlignage, taille des symboles mathématiques).
- Portabilité de l'information (compatibilité OS)

Remarque

Une alternative qui concilie les avantage de LATEX et l'ergonomie du WYSIWYG es présentée par le projet *LyX*.

Philosophie WYSIWYG et compilateur

What You See Is What You Get

Un éditeur de texte qui permet de voir l'aspect de son document imprimé au fur et à mesure de la saisie.

Word de Microsoft, Calc d'OpenOffice.

Compilateur

Le rédacteur saisit une suite d'instructions qui produiront, après interprétation, le document à imprimer.

LaTeX.

Avantages

- Dissociation du sens et de la présentation
- Prise en compte de la disposition globale du texte (ligatures, interlignage, taille des symboles mathématiques).
- Portabilité de l'information (compatibilité OS).

Remarque

Une alternative qui concilie les avantage de LATEX et l'ergonomie du WYSIWYG est présentée par le projet *LyX*.

Philosophie WYSIWYG et compilateur

What You See Is What You Get

Un éditeur de texte qui permet de voir l'aspect de son document imprimé au fur et à mesure de la saisie.

Word de Microsoft, Calc d'OpenOffice.

Compilateur

Le rédacteur saisit une suite d'instructions qui produiront, après interprétation, le document à imprimer.

LaTeX.

Avantages

- Dissociation du sens et de la présentation
- Prise en compte de la disposition globale du texte (ligatures, interlignage, taille des symboles mathématiques).
- Portabilité de l'information (compatibilité OS).

Remarque

Une alternative qui concilie les avantage de LATEX et l'ergonomie du WYSIWYG est présentée par le projet LyX.

Distributions

Définition

Une distribution LATEX est composée de :

- un noyau TeX/LaTeX/PDFTeX,
- une sélection de bibliothèques (packages),
- une sélection d'outils (lecteur DVI, etc.)

Distribution	Système d'exploitation	Remarques
MikTeX	Windows XP	Gestion des packages
TeXLive	Windows XP/Linux	support CD-Rom
TeTeX	Linux/Unix	incluse dans la distribution
iTexMac	Macintosh	Non testé

Fig.: Distributions les plus courantes

Remarque

Selon les systèmes d'exploitation, il faut ajouter les outils de gestion postscript/PDF ainsi qu'un logiciel d'aide à la saisie.

Quelques éditeurs

Fonctionnalités

- Coloration syntaxique
- Dictionnaires (mots clef + langue)
- Complétion automatique
- Interfaçage LaTeX

Éditeur	Système d'exploitation	
Kile	Linux	
Emacs/AucTeX	Windows/Linux	
Texniccenter	Windows	
Vi/Vim LaTeX	Linux/Windows/Mac	

Fig.: Éditeurs LATEX

Quelques éditeurs

Fonctionnalités

- Coloration syntaxique
- Dictionnaires (mots clef + langue)
- Complétion automatique
- Interfaçage LaTeX

Éditeur	Système d'exploitation	
Kile	Linux	
Emacs/AucTeX	Windows/Linux	
Texniccenter	Windows	
Vi/Vim LaTeX	Linux/Windows/Mac	

Fig.: Éditeurs LATEX

Philosophie WYSIWYG et compilateur Distributions et environnement logicie Un fichier modèle

Processus de compilation

Copier ici le diagramme usuel

Formats DVI, PDF et PS

Format	Nom	Usage	Commande
DVI	Device independant	propre à LaTeX	xdvi/yap
PDF	Portable document file	impression/web	acroread/xpdf
PS	postscript	impression	gv

Fig.: Présentation des formats de fichiers

Travaux Pratiques

- Créez un document vierge sous Kile (menu : nouveau/fichier/article)
- Ajoutez quelques lignes de texte et compilez un DVI (menu : build/). Affichez le document produit (menu :...).
- Compilez le même document aux formats PDF et PS. Affichez les documents produits (utilisez la ligne de commande)

Formats DVI, PDF et PS

Format	Nom	Usage	Commande
DVI	Device independant	propre à LaTeX	xdvi/yap
PDF	Portable document file	impression/web	acroread/xpdf
PS	postscript	impression	gv

Fig.: Présentation des formats de fichiers

Travaux Pratiques

- Tréez un document vierge sous Kile (menu : nouveau/fichier/article)
- Ajoutez quelques lignes de texte et compilez un DVI (menu : build/). Affichez le document produit (menu :...).
- Compilez le même document aux formats PDF et PS. Affichez les documents produits (utilisez la ligne de commande).

En-tête standard - francisation

Deux bibliothèques

```
documentclass[11pt]{article}
usepackage[T1]{fontenc}
usepackage[latin 1]{inputenc}
usepackage[french]{babel}% ou frenchle
begin{document}
Copiez ici un texte trouvé sur le site http://www.lemonde.fr
| end{document}
```

Exercices

- Compilez un fichier comportant des lettres accentuées avec ou sans le package fontienc.
- Observer les changements induits par les options de document class suivantes
 - 12nt
 - twocolumn
 - report

En-tête standard - francisation

Deux bibliothèques

```
| \documentclass[11pt]{ article }
| \usepackage[T1]{fontenc}
| \usepackage[latin 1]{inputenc}
| \usepackage[french]{babel}% ou frenchle
| \begin{document}
| Copiez ici un texte trouvé sur le site http://www.lemonde.fr
| \end{document}
```

Exercices

- Compilez un fichier comportant des lettres accentuées avec ou sans le package fontenc.
- Observer les changements induits par les options de document class suivantes:
 - 12pt,
 - twocolumn,
 - report

Titre, table des matières et corps du document

L'auteur fournit les informations à LATEX et ce dernier s'occupe de la mise en page.

```
1 \documentclass{article}
2 \title{Mon titre}
3 \author{Benjamin Collas}
4 \date{}
5 \begin{document}
6 \maketitle
7 \newpage
8 \tableofcontents
9 \end{document}
```

Travaux pratiques

- 1 Utilisez title et author et \maketitle pour produire un titre
- Structurez votre document en \section et \subsection. Ajoutez un \tableofcontents et observez.
- Changez la classe du document en book, structurez en \part et \chapter et observez.

Titre, table des matières et corps du document

L'auteur fournit les informations à LATEX et ce dernier s'occupe de la mise en page.

```
| \documentclass { article }
| \title { Mon titre }
| \author{ Benjamin Collas }
| \date { }
| \begin { document }
| \newpage |
| \table of contents |
| \end{ document }
```

Travaux pratiques

- 1 Utilisez title et author et \maketitle pour produire un titre
- Structurez votre document en \section et \subsection. Ajoutez un \tableofcontents et observez.
- Changez la classe du document en book, structurez en \part et \chapter et observez.

Gestion de la taille

```
 \begin{array}{c} \mbox{$\  \          $|$ {\  \  } A \  \  } \\ \mbox{$\  \           $|$ \  \  } \end{array} } \label{eq:constraints}
```

Gestion de la casse

■ Gestion de l'alignement

```
begin{flushleft}
'A gauche\dots
\end{flushleft}
begin{center}
dots centré \dots
\end{center}
begin{flushright}
dots à droite.
```

- Taille T
- Casse -
- Alignement

Gestion de la taille

```
1 {\huge A \LARGE A \large A
2 \small A \tiny A }
```

Gestion de la casse

```
1 \textit{en italique}
2 \textbf{en gras} et
3 \emph{emphase}
```

■ Gestion de l'alignement

```
t begin{flushleft}

'A gauche\dots

center}

begin{center}

dots centré \dots

end{center}

begin flushright}

dots droite.
```

Taille
A A A A A

- Casse
- Alignement

- Gestion de la taille
- Gestion de la casse
- 1 \textit{en italique}
 2 \textbf{en gras} et
 3 \emph{emphase}
- Gestion de l'alignement

```
begin{flushleft}
'A gauche\dots
lend{flushleft}
begin{center}
dots centré \dots
lend{center}
begin{flushright}
dots à droite.
```


- Casse -
- Alignement

- Gestion de la taille
- Gestion de la casse
- textit{en italique}

 textbf{en gras} et

 hemph{emphase}
- Gestion de l'alignement

```
begin{flushleft}

'A gauche\dots
\end{flushleft}

begin{center}

dots center \dots
\end{center}

begin{flushright}

dots \addred dots
\end{flushright}

\end{flushright}

\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\end{flushright}
\
```

- Taille

 A A A A A
- en italique en gras et emphase
- Alignement

```
    Gestion de la taille
```

```
1 {\huge A \LARGE A \large A
2 \small A \tiny A }
```

Gestion de la casse

```
1 \textit{en italique}
2 \textbf{en gras} et
3 \emph{emphase}
```

■ Gestion de l'alignement

```
begin{flushleft}
'A gauche\dots

end{flushleft}

begin{center}

dots center \dots
end{center}

begin{flushright}

dots à droite.

end{flushright}
```

Taille
A A A A A

en italique en gras et emphase

Alignement —

```
Gestion de la taille
```

```
1 {\huge A \LARGE A \large A
2 \small A \tiny A }
```

Gestion de la casse

```
1 \textit{en italique}
2 \textbf{en gras} et
3 \emph{emphase}
```

■ Gestion de l'alignement

```
begin{flushleft}
'A gauche\dots

end{flushleft}
begin{center}

dots centré \dots
end{center}

begin{flushright}

dots à droite.
end{flushright}
```

Taille
A A A A A

en italique en gras et emphase

Alignement

■ Liste élémentaire

```
Une liste non numérotée :
| begin{itemize}
| item une entrée |
| titem une seconde entrée | ... |
| bed{itemize}
```

Liste numérotée

```
On peut ainsi recencer :
begin{enumerate}
titem une entrée
titem une seconde entrée [...]
tend{enumerate}
```

Liste élémentaire

Une liste non numérotée:

- une entrée
- une seconde entrée [...
- et encore une entré

Liste numérotée

```
On peut ainsi recencer:
```

- 1. une entrée
- 2. une seconde entrée [..
- 3. et encore une entrée

- Essayez les différents types
- Créez des sous-listes.

Liste élémentaire

```
Une liste non numérotée :
| begin{itemize}
| item une entrée |
| item une seconde entrée | ... |
| bed{itemize}
```

■ Liste numérotée

```
On peut ainsi recencer :
begin{enumerate}
titem une entrée
titem une seconde entrée [...]
belond{enumerate}
```

Liste élémentaire

Une liste non numérotée:

- une entrée
- une seconde entrée [...]
- et encore une entrée

Liste numérotée

On peut ainsi recencer

- 1. une entrée
- 2. une seconde entrée [..
- 3. et encore une entrée

- Essayez les différents types
- Créez des sous-listes.

Liste élémentaire

```
| Une liste non numérotée :
|2 \begin{itemize}
|3 \item une entrée
```

- \item une seconde entrée [...]
- 5 \end{itemize}
- Liste numérotée

```
1 On peut ainsi recencer :
```

- 2 \ begin { enumerate }
- 3 \item une entrée
- | \item une seconde entrée [...]
- 5 \ end { enumerate }

Liste élémentaire

Une liste non numérotée:

- une entrée
- une seconde entrée [...]
- et encore une entrée

Liste numérotée

On peut ainsi recencer:

- 1. une entré
- 2. une seconde entrée [..
- 3. et encore une entrée

- Essayez les différents types
- Créez des sous-listes.

Liste élémentaire

```
| Une liste non numérotée :
| begin{itemize}
| item une entrée |
| titem une seconde entrée | ... |
| begin{itemize}
```

■ Liste numérotée

```
On peut ainsi recencer :
| begin{enumerate}
| item une entrée |
| item une seconde entrée [...]
| bend{enumerate}
```

Liste élémentaire

Une liste non numérotée:

- une entrée
- une seconde entrée [...]
- et encore une entrée

Liste numérotée

On peut ainsi recencer:

- 1. une entrée
- 2. une seconde entrée [...]
- 3. et en core une entrée

- Essayez les différents types
- Créez des sous-listes.

Liste élémentaire

```
| Une liste non numérotée :
| begin{itemize}
| item une entrée |
| titem une seconde entrée | ... |
| begin{itemize}
```

■ Liste numérotée

```
1 On peut ainsi recencer :
2 \begin{enumerate}
3 \item une entrée
4 \item une seconde entrée [...]
5 \end{enumerate}
```

Liste élémentaire

Une liste non numérotée :

- une entrée
- une seconde entrée [...]
- et encore une entrée

Liste numérotée

On peut ainsi recencer:

- 1. une entrée
- 2. une seconde entrée [...]
- 3. et encore une entrée

- Essayez les différents types.
- Créez des sous-listes.

- Un tableau sans filet
- 1 \begin { tabular } { lcr }
- 2 Gauche & Milieu & Droite \\
- 3 Une & nouvelle & ligne \\
- 4 \end{tabular}
- Un tableau avec file
- 1 \ begin { tabular } { | | c| r }
- 2 \hline
- Gauche & Milieu & Droite \\
- 4 Une & nouvelle & ligne \
- 5 \end{tabular

Un tableau sans filet

Un tableau avec filet

Remarque

- Un tableau sans filet
- 1 \begin { tabular } { lcr }
- 2 Gauche & Milieu & Droite \\
- 3 Une & nouvelle & ligne \\
- 4 \end{tabular}
- Un tableau avec file
- 1 \begin{tabular}{||c|r}
- 2 \hline
- Gauche & Milieu & Droite \\
- 4 Une & nouvelle & ligne \
- 5 \end{tabular

Un tableau sans filet

Gauche Milieu Droite Une nouvelle ligne

Un tableau avec file

Gauche Milieu Droite Une nouvelle ligne

Remarque

- Un tableau sans filet
- 1 \begin { tabular } { lcr }
- 2 Gauche & Milieu & Droite \\
- 3 Une & nouvelle & ligne \\
 4 \end{tabular}
- Un tableau avec filet
- 1 \begin { tabular } { | | c| r }
- 2 \hline
- 3 Gauche & Milieu & Droite \\
- 4 Une & nouvelle & ligne \\
- 5 \end{tabular}

Un tableau sans filet

Gauche Milieu Droite Une nouvelle ligne

Un tableau avec file

Gauche Milieu Droite Une nouvelle ligne

Remarque

```
Un tableau sans filet
```

```
| \begin{tabular}{|cr}
| Gauche & Milieu & Droite \\
```

- Une & nouvelle & ligne \\
- 4 \end{tabular}
- Un tableau avec filet
- 1 \ begin{tabular}{||c|r}
- 2 \hline
- 3 Gauche & Milieu & Droite \\
- 4 Une & nouvelle & ligne \\
- 5 \end{tabular}

Un tableau sans filet

Gauche Milieu Droite Une nouvelle ligne

Un tableau avec filet

Gauche Milieu Droite Une nouvelle ligne

Remarque

```
Un tableau sans filet
```

```
| \begin{tabular}{|cr}
| Gauche & Milieu & Droite \\
| Une & nouvelle & ligne \\
```

- 4 \ end { tabular }
- Un tableau avec filet

```
1 \begin{tabular}{||c|r}
```

- 2 \ hline
- 3 Gauche & Milieu & Droite \\
- 4 Une & nouvelle & ligne \\
- 5 \end{tabular}

Un tableau sans filet

Gauche Milieu Droite Une nouvelle ligne

Un tableau avec filet

Gauche Milieu Droite Une nouvelle ligne

Remarque

Labels et références, flottants

- Labels et références
- 1 \ section { Section importante }
- 2 \label{SecImp}[...]
- 3 Comme nous l'avons déja abordé dans
- 4 cet ouvrage (Cf.section\ref{SecImp}).

1 Section importante

 $[\ldots]$ Comme nous l'avons déja abordé dans cet ouvrage (Cf. section 1).

Remarques

- L'argument de label n'apparait pas dans le document compilé (ne pas confondre avec un caption).
- Pour utiliser les références, compiler deux fois le documen

Flottant

Un flottant est un objet hors-texte qui s'insère dans le document (tableau, schéma image,...). On peut gérer sa position (*figure*), lui donner un nom (*caption*) et y faire référence (*label*).

Labels et références, flottants

- Labels et références
- 1 \ section { Section importante }
- 2 \label{SecImp}[...]
- 3 Comme nous l'avons déja abordé dans
- 4 cet ouvrage (Cf.section \ ref { SecImp }).

1 Section importante

[...] Comme nous l'avons déja abordé dans cet ouvrage (Cf. section 1).

Remarques

- L'argument de label n'apparait pas dans le document compilé (ne pas confondre avec un caption).
- Pour utiliser les références, compiler deux fois le document.

Flottant

Un flottant est un objet hors-texte qui s'insère dans le document (tableau, schéma image,...). On peut gérer sa position (*figure*), lui donner un nom (*caption*) et y faire référence (*label*).

Labels et références, flottants

Labels et références

```
1 \ section { Section importante }
```

- 2 \label {SecImp}[...]
- 3 Comme nous l'avons déja abordé dans
- 4 cet ouvrage (Cf.section\ref{SecImp}).

1 Section importante

[...] Comme nous l'avons déja abordé dans cet ouvrage (Cf. section 1).

Remarques

- L'argument de label n'apparait pas dans le document compilé (ne pas confondre avec un caption).
- Pour utiliser les références, compiler deux fois le document.

Flottant

Un flottant est un objet hors-texte qui s'insère dans le document (tableau, schéma, image,...). On peut gérer sa position (*figure*), lui donner un nom (*caption*) et y faire référence (*label*).

Flottants et texte

Image avec Caption centrée

```
| \begin{figure } [!h] |
| \includegraphics [width=1.8cm] |
| \text{image.eps} |
| \caption{Belle image} |
| \text{end} figure }
```

Image en-texte

```
\usepackage{floatflt}
```

Image avec caption centrée :

Image en-texte:

Remarque

L'option !h de figure place la figure dans le document «là» où la commande est insérée. On peut aussi utiliser t pour top b pour bottom et p pour page séparée.

Image avec Caption centrée

```
1 \begin{figure}[!h]
2 \includegraphics[width=1.8cm]
3 {image.eps}
4 \caption{Belle image}
5 \end{figure}
```

Image en-texte

```
t \usepackage{floatflt}
2 \begin{floatingfigure}{1.7cm}
3 \fbox{\includegraphics
4 [width=1.8cm]{abel.eps}}}
5 \end{floatingfigure}
```

Image avec caption centrée :

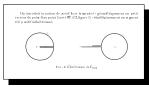
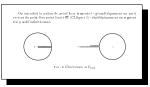


Image en-texte:

Remarque

L'option !h de figure place la figure dans le document «là» où la commande es insérée. On peut aussi utiliser t pour top b pour bottom et p pour page séparée.

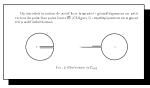

Image avec Caption centrée

```
1 \begin{figure}[!h]
2 \includegraphics[width=1.8cm]
3 {image.eps}
4 \caption{Belle image}
5 \end{figure}
```

Image en-texte

```
\usepackage{floatflt}
begin{floatingfigure}{1.7cm}{
  \begin{floatingfigure}{1.7cm}{
  \fbox{\includegraphics}
  [width=1.8cm]{abel.eps}}}
} \end{floatingfigure}
```

Image avec caption centrée :


■ Image en-texte :

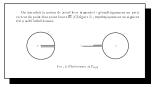
Remarque

L'option !h de figure place la figure dans le document «là» où la commande est insérée. On peut aussi utiliser t pour top b pour bottom et p pour page séparée.

- Image avec Caption centrée
- 1 \ begin { figure } [!h]
- 2 \includegraphics[width=1.8cm]
- 3 {image.eps}
- 4 \ caption { Belle image }
- 5 \end{figure}
- Image en-texte
- 1 \usepackage { floatflt }
- 2 \begin{floatingfigure }{1.7cm}{
- $3 \mid \mathbf{box} \{ \setminus \mathbf{ncludegraphics} \}$
- 4 [width=1.8cm]{abel.eps}}}
- | \end{floatingfigure}

Image avec caption centrée:

Image en-texte :



Remarque

L'option !h de figure place la figure dans le document «là» où la commande est insérée. On peut aussi utiliser t pour top b pour bottom et p pour page séparée.

- Image avec Caption centrée
- 1 \ begin { figure } [!h]
- 2 \includegraphics[width=1.8cm]
- 3 {image.eps}
- 4 \ caption { Belle image}
- 5 \end{figure}
- Image en-texte
- 1 \usepackage{floatflt}
- 2 \begin{floatingfigure}{1.7cm}{
- 3 \fbox {\includegraphics
- 4 [width=1.8cm]{abel.eps}}}
- \end{floatingfigure}

Image avec caption centrée :

Image en-texte:

Remarque

L'option !h de figure place la figure dans le document «là» où la commande est insérée. On peut aussi utiliser t pour *top* b pour *bottom* et p pour *page séparée*.

- La bibliothèque *PSTricks*C'est une bibliothèque LATEX extrèmement puissante qui permet la réalisation de courbes, motifs, flèches, splines, *etc.* Les objets sont définis par mots-clefs, options et coordonnées directement dans le code.
- Les logiciels de dessin vectoriel
 Des logiciels tels Adobe Illustrator ou JasTeX permettent de créer des dessins vectoriels
 à la souris, qui seront incorporés par un \includegraphics.
- Des générateurs de code PSTricks Le logiciel jPicEdt permet de tracer ses schémas à la souris, puis de copier le code PSTricks correspondant dans le code LATEX du document.

- Les schémas engendrés par PSTricks doivent être traités comme des flottants
- Pour utiliser *PSTricks* avec PDFLateX, il faut le coupler au package *PDFTricks*

- La bibliothèque *PSTricks*C'est une bibliothèque LATEX extrèmement puissante qui permet la réalisation de courbes, motifs, flèches, splines, *etc.* Les objets sont définis par mots-clefs, options et coordonnées directement dans le code.
- Les logiciels de dessin vectoriel

 Des logiciels tels Adobe Illustrator ou JasTeX permettent de créer des dessins vectoriels
 à la souris, qui seront incorporés par un \includegraphics.
- Des générateurs de code PSTricks Le logiciel jPicEdt permet de tracer ses schémas à la souris, puis de copier le code PSTricks correspondant dans le code LATEX du document.

- Les schémas engendrés par *PSTricks* doivent être traités comme des flottants
- Pour utiliser *PSTricks* avec PDFLateX, il faut le coupler au package *PDFTricks*

- La bibliothèque *PSTricks*C'est une bibliothèque LATEX extrèmement puissante qui permet la réalisation de courbes, motifs, flèches, splines, *etc.* Les objets sont définis par mots-clefs, options et coordonnées directement dans le code.
- Les logiciels de dessin vectoriel

 Des logiciels tels *Adobe Illustrator* ou *JasTeX* permettent de créer des dessins vectoriels à la souris, qui seront incorporés par un \includegraphics.
- Des générateurs de code *PSTricks*Le logiciel *jPicEdt* permet de tracer ses schémas à la souris, puis de copier le code PSTricks correspondant dans le code LATEX du document.

- Les schémas engendrés par *PSTricks* doivent être traités comme des flottants
- Pour utiliser *PSTricks* avec PDFLateX, il faut le coupler au package *PDFTricks*

- La bibliothèque PSTricks C'est une bibliothèque LATEX extrèmement puissante qui permet la réalisation de courbes, motifs, flèches, splines, etc. Les objets sont définis par mots-clefs, options et coordonnées directement dans le code.
- Les logiciels de dessin vectoriel

 Des logiciels tels Adobe Illustrator ou JasTeX permettent de créer des dessins vectoriels
 à la souris, qui seront incorporés par un \includegraphics.
- Des générateurs de code *PSTricks*Le logiciel *jPicEdt* permet de tracer ses schémas à la souris, puis de copier le code PSTricks correspondant dans le code LATEX du document.

- Les schémas engendrés par *PSTricks* doivent être traités comme des flottants.
- Pour utiliser *PSTricks* avec PDFLateX, il faut le coupler au package *PDFTricks*.

Mode mathématique et symboles

Les expressions mathématiques sont délimitées par,

- En texte : le symbole \$,
- En mode centré : les symboles \[et \].

Pour saisir du texte en mode mathématique, utilisez la commande \mathrm{...}.

Remarque

La bibliothèque *amsmath* offre des possibilités avancées en terme de symboles environnements d'équations, et théorèmes.

Exercice

Entrez la formule suivante et testez les différents modes mathématiques

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{s^n} = (\prod_{p \in \mathcal{P}} 1 - p^{-s})^{-1}$$

Utilisez le formulaire papier

Mode mathématique et symboles

Les expressions mathématiques sont délimitées par,

- En texte : le symbole \$,
- En mode centré : les symboles \[et \].

Pour saisir du texte en mode mathématique, utilisez la commande \mathrm{...}.

Remarque

La bibliothèque *amsmath* offre des possibilités avancées en terme de symboles, environnements d'équations, et théorèmes.

Exercice

Entrez la formule suivante et testez les différents modes mathématiques

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{s^n} = (\prod_{p \in \mathcal{P}} 1 - p^{-s})^{-1}$$

Utilisez le formulaire papier

Mode mathématique et symboles

Les expressions mathématiques sont délimitées par,

- En texte : le symbole \$,
- En mode centré : les symboles \[et \].

Pour saisir du texte en mode mathématique, utilisez la commande $\mbox{\tt mathrm}\{\dots\}$.

Remarque

La bibliothèque *amsmath* offre des possibilités avancées en terme de symboles, environnements d'équations, et théorèmes.

Exercice

Entrez la formule suivante et testez les différents modes mathématiques.

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{s^n} = (\prod_{p \in \mathcal{P}} 1 - p^{-s})^{-1}$$

Utilisez le formulaire papier.

Théorèmes, preuves, compteur et macro Deux packages :XY-Pic et Listings

Formules, équations numérotées ...

Formule

```
1 \begin{equation}
2 \Delta = \frac {[...] \label{nom}
3 \end{equation}
4 | Comme défini en (\ref{nom})...
```

■ Equations (amsmath

```
| \begin{align}
| ___ | \begin{align}
| __ | n & = \int _{0}[...] \nonumber\\
| __ | & = \int _{0}[...], dx
| \end{align}
```

Formule

```
\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \eqno(1) Comme défini en (1)...
```

Equations

```
L_t = \int_0^{r/2} \sin^2 x \cos^{n-x} x dx
L_t = \int_0^{r/2} (1 - \cos^n x) \cos^{n-x} x dx \qquad (1)
```

Remarque

L'environnement subequation du package amsmath permet de numéroter (et de référencer) chaque équation en 3.a. 3.b . . . par exemple.

Théorèmes, preuves, compteur et macro Deux packages :XY-Pic et Listings

Formules, équations numérotées ...

Formule

```
| \begin{equation}
| \Delta = \frac{[...] \label{nom}
| \overline{nom} \cdot \text{comme défini en (\ref{nom})...}
```

■ Equations (amsmath

<u>Formule</u>

```
\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \eqno(1) Comme défini en (1)...
```

Equations

```
I_{n} = \int_{0}^{\pi/2} \sin^{2}x \cos^{n-2}x dx
I_{n} = \int_{0}^{\pi/2} (1 - \cos^{2}x) \cos^{n-2}x dx
(1)
```

Remarque

L'environnement *subequation* du package *amsmath* permet de numéroter (et de référencer) chaque équation en 3.a, 3.b . . . par exemple.

Théorèmes, preuves, compteur et macro Deux packages: XY-Pic et Listings

Formules, équations numérotées

```
Formule
```

```
1 \begin { equation }
2 \ Delta =\frac { [...] \ label { nom}
3 \end{equation}
4 Comme défini en (\ref{nom})...
```

Equations (amsmath)

```
1 \ begin { align }
_{2}|_{n \& = \inf_{0}[...] \nonumber}
3 \mid I_n \& = \inf_{0 \in \mathbb{N}} dx
4 \ end { align }
```

Formule

```
\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial u^2}
Comme défini en (1)...
```

Théorèmes, preuves, compteur et macro Deux packages :XY-Pic et Listings

Formules, équations numérotées ...

Formule

```
| \begin{equation}
| \Delta = \frac{[...] \label{nom}
| \end{equation}
| Comme défini en (\ref{nom})...
```

■ Equations (amsmath)

```
1 \begin{align}
2 | I_n & = \int_{0}[...] \nonumber\\
3 | I_n & = \int_{0}[...], dx
4 \end{align}
```

Formule

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \eqno(1)$$
 Comme défini en (1)...

Equations

$$I_n = \int_0^{\pi/2} \sin^2 x \cos^{n-2} x dx$$

$$I_n = \int_0^{\pi/2} (1 - \cos^2 x) \cos^{n-2} x dx$$
(1)

Remarque

L'environnement subequation du package amsmath permet de numéroter (et de référencer) chaque équation en 3.a, 3.b... par exemple.

Formules, équations numérotées ...

Formule

```
| \begin{equation}
| \Delta = \frac{[...] \label{nom}
| \end{equation}
| Comme défini en (\ref{nom})...
```

■ Equations (amsmath)

```
1 \begin{align}
2 | I_n & = \int_{0}[...] \nonumber\\
3 | I_n & = \int_{0}[...], dx
4 \end{align}
```

Formule

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$
 Comme défini en (1)...

Equations

$$I_n = \int_0^{\pi/2} \sin^2 x \cos^{n-2} x dx$$

$$I_n = \int_0^{\pi/2} (1 - \cos^2 x) \cos^{n-2} x dx$$
(1)

Remarque

L'environnement subequation du package amsmath permet de numéroter (et de référencer) chaque équation en 3.a, 3.b . . . par exemple.

Deux packages :XY-Pic et Listings

...et système

Système

- 1 \[\left\lbrace\begin{array}{ccc}

- 2 x-4y&=&5\\
 3 -2x+7y&=&-1
 4 \end{array}\right.\]

Système

$$\begin{bmatrix} x - 4y & = & 5 \\ -2x + 7y & = & - \end{bmatrix}$$

Théorèmes, preuves, compteur et macro Deux packages :XY-Pic et Listings

Matrices

Exemple instructif

```
1 \[\left(\begin{array}{ccc}
2 a& b& c\\
3 d& e& f\\
9& h& i
5 \end{array}\right)
6 \]
```

Exemple instructif

$$\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)$$

Exercice

Saisissez la matrice suivante

$$\begin{pmatrix}
0 & 1 & 0 & \dots & 0 \\
\vdots & & \ddots & & \vdots \\
\vdots & & & \ddots & \vdots \\
0 & \dots & \dots & \dots & 1
\end{pmatrix}$$

Indice: utiliser \ddots, \ldots et
\vdots.

Correction

- \[\left(\begin{array}{ccccc}
- 3 \vdots& &\ddots& & \vdots\\
- 4 \vdots& & &\ddots&\vdots\\
- \amd\(\amd\) \a
- 6 \end{ array } \ right) \

Matrices

Exemple instructif

```
1 \[\left(\begin{array}{ccc}
2 a& b& c\\
3 d& e& f\\
g& h& i
5 \end{array}\right)
6 \]
```

Exemple instructif

$$\left(\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array}\right)$$

Exercic

Saisissez la matrice suivante

Indice: utiliser \ddots, \ldots et
\vdots.

Correction

- 1 \[\left(\begin{array}{cccc}\)
 2 0& 1& 0& \ldots & 0\\
 2 \vdots& & \vdots\\
- 3 \vdots& &\ddots& & \vdots\\
- 4 \vdots& & &\ddots&\vdots\
- 6 \end{array}\right)\]

Matrices

Exemple instructif

```
1 \[\left(\begin{array}{ccc}
2 a& b& c\\
3 d& e& f\\
4 g& h& i
5 \end{array}\right)
6 \]
```

Exemple instructif

$$\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)$$

Exercice

Saisissez la matrice suivante.

$$\left(\begin{array}{ccccc} 0 & 1 & 0 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ \vdots & & & \ddots & \vdots \\ 0 & \dots & \dots & \dots & 1 \end{array}\right)$$

Indice: utiliser \ddots, \ldots et
\vdots.

Correction

- 1 \[\left(\begin{array}{ccccc} 0& 1& 0& \ldots & 0\\
- 3 \vdots& &\ddots& & \vdots\\
- 4 \vdots& & &\ddots&\vdots\\
- 5 0&\ldots&\ldots& \ldots& 1
- 6 \ end { array } \ right) \

Matrices

Exemple instructif

```
1 \[\left(\begin{array}{ccc}
2 a& b& c\\
3 d& e& f\\
4 g& h& i
5 \end{array}\right)
6 \]
```

Exemple instructif

$$\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)$$

Exercice

Saisissez la matrice suivante.

Indice: utiliser \ddots, \ldots et
\vdots.

Correction

- 1 \[\left(\begin{array}{ccccc}
 0& 1& 0& \ldots & 0\\
 2 \vdots& & \dots& & \vdots\\
- 3 \vdots& &\ddots& & \vdots\\
- \vdots& & &\ddots&\vdots\\
 0&\ldots&\ldots& \ldots& 1
- 6 \ end { array } \ right) \]

Numérotation des théorèmes

```
1 %Preambule
 \newtheorem { theo } { Théorème } [ section ]
3 \newtheorem{cor}[theo]{Corollaire}
  \newtheorem{prop}{ Propriété}
5 %Corps
6 \section{Faisceaux analytiques [...]}
7 \begin{theo}Un théorème\end{theo}
8 \ section { Faisceaux [...] cohérents }
 Le théorème [...] sa section
10 \begin { theo } [GAGA]
11 Soit $\mathcal{F}$ un faisceau [...]
12 \end{theo}
13 Ce cor. [...] la section et le théo.
  \begin { cor } [ Chow ]
  Toute sous-variété analytique [...]
  \end{cor}
17 Cette propriété ne l'est pas,
18 \begin { prop }
19 Le $i$—ème groupe de[...]
20 \end{prop}
```

1 Une section

Le théorème suivant est numéroté selon la section

Théorème 1.1 Un théorème important

2 Faisceaux analytiques et algébriques cohérents

Le théorème suivant est numéroté selon sa section

Théorème 2.1 (GAGA) Soit \mathcal{F} un faisceau analytique cohérent sur une variété projective X_{hol} . Il n'existe qu'un unique faisceau algébrique cohérent \mathcal{F}_{alg} sur X_{alg} tel que $\mathcal{F} = (\mathcal{F}_{alg})_{hol}$.

 $De\ plus,\ les\ morphismes\ naturels\ suivants\ sont\ des\ isomorphismes,$

$$H^i(X_{alg}, \mathcal{F}_{alg}) \rightarrow H^i(X_{hol}, \mathcal{F}).$$

Ce corollaire du théorème est numéroté selon la section et le théorème

Corollaire 2.2 (Chow) Toute sous-variété analytique projective est algébrique Cette propriété ne l'est pas.

Propriété 1 Le i-ème groupe de cohomologie d'un faisceau algébrique sur un espace projectif de dimension n est nul dès que i > n.

Créer ses environnements

Syntaxe de la commande :

```
1 \ newenvironment{nom}[nbre arg]
 [valeur defaut 1er arg]
3 { début }
```

Illustration : environnement de preuve

```
\newenvironment{Myproof}[1]
2 [Démonstration.]%
 {\begin{changemargin}{.7cm}
4 { .7cm } \ begin { proof } [#1] } %
5 {\end{proof}\end{changemargin}}
```

Remarques

- Ne pas utiliser de variables dans fin
- Pour des raccourcis simples, utilisez \newcommand{\raccourci}{def}

LE COMPLÉTÉ PROFINI DU MAPPING CLASS GROUP.

2.2.2 Etude du cas profini

Afin de conclure sur les éléments d'ordre finis de $\hat{\Gamma}_{0,lab}$, nous autons besoin de la proposition suivante

Proposition 2.26. Soit G groupe profini vérifiant la propriété (H) pour des sous-groupes G_i , alors il vérifie la promiété (+) pour as mêmes sous-groupes,

Remarque : reliant ce résultat à la remarque précédent le corollaire 2.2.4, en obtient plus précisément l'équivalence entre les propriétés (H) et (+) dans le cas des groupes purfinis.

La démonstation de cette demiète nécessitera deux lemmes que nous admetimons,

Lemme 2.2.7. Dans le cas où G est fini et vérifie (H), alors $G_i = G$ nour un circlain i et $G_i = \{1\}$ nour les autres.

Esquisse de preners. Ceci découle directement d'un thécrème de Serre pour loquel nous renvoyons à la démonstration à la fin de l'article Hue 291.

Ainsi one.

Lemme 2.28. Considérant H et K sous-arounes fermés de G aroune molini. Soit N un H-madule discret cannot on associe le G matule coinquit $M = CoInd_G^H(N)$.

Le morphisme amonique suitunt est dors un vloroement dense

 $H^n(K,M) \longrightarrow \prod_{H \in K \in H \backslash G/K} H^n(H \cap xKx^{-1},N)$

Pour levuel on consultera Particle [Sci.97] pour une preuve.

La d'inonstration de la proposition 2.26 est maintenant immédiates

Démonstration. Considérons H sous spouce fermé de G. N un H-module discret ainsi one le module conduct $M = M_G^H(N)$. On a alors le diagramme cartésien suivant où e et e sout les applications restrictions

$$\Pi_I H^n(G_I, M)$$
 $\Pi_I \Pi_{H_IG_I} H^n(H \cap xG_Ix^-)$

Par le lemme de Shanira, l'amilication verticale de garche est un isomorphisme. Le lemme 2.28 s'anplique à l'application verticale de droite. Ainsi a est un plongement dense pour a suffisament grand.

En particulier, considérant H sous-groupe fini de G, nous pouvous apoliquer le lemme 2,27 et $H = H \cap xG_1x^{-1}$ pour un certain i, donc H est inclus dans le conjugué de l'un des G_1 . Present maintenant $H = G_j$, la conclusion du lemme 2.2.7 se traduit par $G_j \cap xG_jx^{-1} = \{1\}$ pour

Ainsi, G wrifte hien la propriété (+) pour les G.,

Les compteurs

Pour créer des compteurs indépendamment des environnements theorem.

Syntaxe de la commande

```
\newcounter{nom}% creation d'un compteur 'nom' \setcounter{nom}{5}% initialisation à '5' \addtocounter{nom}{-3}% changement de la variable Affichage de \thenom % affichage du contenu
```

Illustration : environnement exercice

```
1 \newcounter{cexo}\setcounter{cexo}{1}
2 \newenvironment{exo}[1]%
3 {\textbf{Exercice \thecexo : }\textit{#1}\\}%
4 {\addtocounter{cexo}{1}\vspace{.50cm}}
```

Exercice

Créer un environnement d'exercice dont la numérotation dépend de la section (*ie* affiche 1.1, 1.2, *etc.*), avec remise à zéro du premier compteur lors d'un changemen de section.

Les compteurs

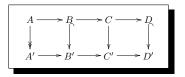
Pour créer des compteurs indépendamment des environnements theorem.

- Syntaxe de la commande
- newcounter{nom}% creation d'un compteur 'nom'
- 2 \setcounter{nom}{5}% initialisation à '5'
- $3 \setminus addtocounter\{nom\}\{-3\}\%$ changement de la variable
- 4 Affichage de \thenom % affichage du contenu
- Illustration : environnement exercice

```
| \newcounter{cexo}\setcounter{cexo}{1}
```

- 2 \newenvironment{exo}[1]%
- 3 {\textbf{Exercice \thecexo : }\textit{#1}\\}%
- 4 {\addtocounter{cexo}{1}\vspace{.50cm}}

Exercice


Créer un environnement d'exercice dont la numérotation dépend de la section (*ie* affiche 1.1, 1.2, *etc.*), avec remise à zéro du premier compteur lors d'un changement de section.

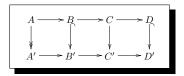
Algèbre: diagrammes

La bibliothèque XY-pic trace des diagrammes commutatifs, suites exactes, etc.

Diagramme commutatif

```
| \usepackage[all]{xy}
| %Corps
| \[\xymatrix{
| A\ar[r]\ar@{->>}[d]&B\ar[r]\ar@{^{(}->}
| [d]&C\ar[r]\ar[d]&D\ar@{^{(}->}[d]\\
| 6 A'\ar[r]&B'\ar[r]&C'\ar[r]&D'}\]
```


Autre exemple (code : Aaron Lauda)


Fig.: Transformation naturelle

Algèbre : diagrammes

La bibliothèque XY-pic trace des diagrammes commutatifs, suites exactes, etc.

Diagramme commutatif

```
| \usepackage[all]{xy}
| %Corps
| \[\xymatrix{
| A\ar[r]\ar@{->>}[d]&B\ar[r]\ar@{^{(} ->}
| [d]&C\ar[r]\ar[d]&D\ar@{^{(} ->}[d]\\
| 6 A'\ar[r]&B'\ar[r]&C'\ar[r]&D'}\]
```


Autre exemple (code : Aaron Lauda)

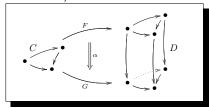
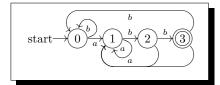



Fig.: Transformation naturelle

Informatique: automates cellulaires

■ La bibliothèque XY-pic permet aussi de réaliser des automates cellulaires.

```
1 \[\entrymodifiers={++[o][F-]}
2 \SelectTips{cm}{}
3 \xymatrix @-1pc {
4 *\txt{start} \ar[r]
8 0 \ar@(r,u)[]^b \ar[r]_a
8 1 \ar[r]^b \ar@(r,d)[]_a
7 & 2 \ar[r]^b
\ar 'dr_![i] '_ur[i] _a [i]
9 &*++[o][F=]{3}
10 \ar 'dr_![ii] '_ur[ii] [ii] }\]
```


Remarque

Consulter le fichier d'aide pour une foultitude d'autres exemples (noeuds, tresses, polyèdres,...).

Informatique: codes sources

La bibliothèque listings

Cette bibliothèque permet la présentation de codes sources.

Ses fonctionnalités:

- reconnaissance des mots clefs par langage (C/C++, Turbo Pascal, Java, Mathematica, T_EX/ LaT_EX, etc.),
- numérotation automatique des lignes,
- fioritures d'encadrement (ombres, arrondis, etc.)

Il suffit d'encadrer le code par des balises

\begin{lstlisting}...\end{lstlisting}.

Remarque

Cette bibliothèque est utilisée dans cette présentation.

Courrier

La bibliothèque *lettre* ajoute une classe qui permet la rédaction de lettres selon les normes de présentations françaises.

Présentation Beamei

La bibilothèque Beamer couplée avec PDFTeX permet la réalisation de slide show

Mathématiques sur interne

La bibliothèque php *LaTexRender* permet de rendre des mathématiques en ligne, comme sur des forums (phpbb, etc.) ou des blogs (wordpress, etc.). Le logiciel *Hevea* exporte les fichiers LaTeX en HTML.

LaTeX en Wysiwyg

Couplées avec *Emacs*, les bibliothèques *Latex-preview* (disponible dans le package AucTeX) ou *WhizzyTeX* permettent une prévisualisation instantanée.

Autre solution complète. *LvX*.

Courrier

La bibliothèque *lettre* ajoute une classe qui permet la rédaction de lettres selon les normes de présentations françaises.

Présentation Beamer

La bibilothèque Beamer couplée avec PDFTeX permet la réalisation de slide show.

Mathématiques sur interne

La bibliothèque php *LaTexRender* permet de rendre des mathématiques en ligne, comme sur des forums (phpbb, etc.) ou des blogs (wordpress, etc.). Le logiciel *Hevea* exporte les fichiers LaTeX en HTML.

LaTeX en Wysiwyd

Couplées avec *Emacs*, les bibliothèques *Latex-preview* (disponible dans le package AucTeX) ou *WhizzyTeX* permettent une prévisualisation instantanée. Autre solution complète. *LvX*.

Courrier

La bibliothèque *lettre* ajoute une classe qui permet la rédaction de lettres selon les normes de présentations françaises.

Présentation Beamer

La bibilothèque Beamer couplée avec PDFTeX permet la réalisation de slide show.

Mathématiques sur internet

La bibliothèque php *LaTexRender* permet de rendre des mathématiques en ligne, comme sur des forums (phpbb, etc.) ou des blogs (wordpress, etc.). Le logiciel *Hevea* exporte les fichiers LaTeX en HTML.

LaTeX en Wysiwyd

Couplées avec *Emacs*, les bibliothèques *Latex-preview* (disponible dans le package AucTeX) ou *WhizzyTeX* permettent une prévisualisation instantanée. Autre solution complète. *LvX*.

Courrier

La bibliothèque *lettre* ajoute une classe qui permet la rédaction de lettres selon les normes de présentations françaises.

Présentation Beamer

La bibilothèque Beamer couplée avec PDFTeX permet la réalisation de slide show.

Mathématiques sur internet

La bibliothèque php *LaTexRender* permet de rendre des mathématiques en ligne, comme sur des forums (phpbb, etc.) ou des blogs (wordpress, etc.). Le logiciel *Hevea* exporte les fichiers LaTeX en HTML.

LaTeX en Wysiwyg

Couplées avec *Emacs*, les bibliothèques *Latex-preview* (disponible dans le package AucTeX) ou *WhizzyTeX* permettent une prévisualisation instantanée. Autre solution complète, *LyX*.